Evaluating imputation techniques for missing data in ADNI: A patient classification study

Sergio Campos, Luis Pizarro, Carlos Valle, Katherine R. Gray, Daniel Rueckert, Héctor Allende

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

29 Scopus citations

Abstract

In real-world applications it is common to find data sets whose records contain missing values. As many data analysis algorithms are not designed to work with missing data, all variables associated with such records are generally removed from the analysis. A better alternative is to employ data imputation techniques to estimate the missing values using statistical relationships among the variables. In this work, we test the most common imputation methods used in the literature for filling missing records in the ADNI (Alzheimer’s Disease Neuroimaging Initiative) data set, which affects about 80% of the patients–making unwise the removal of most of the data. We measure the imputation error of the different techniques and then evaluate their impact on classification performance. We train support vector machine and random forest classifiers using all the imputed data as opposed to a reduced set of samples having complete records, for the task of discriminating among different stages of the Alzheimer’s disease. Our results show the importance of using imputation procedures to achieve higher accuracy and robustness in the classification.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsAlvaro Pardo, Josef Kittler
PublisherSpringer Verlag
Pages3-10
Number of pages8
ISBN (Print)9783319257501
DOIs
StatePublished - 2015
Externally publishedYes
Event20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015 - Montevideo, Uruguay
Duration: 9 Nov 201512 Nov 2015

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9423
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference20th Iberoamerican Congress on on Pattern Recognition, CIARP 2015
Country/TerritoryUruguay
CityMontevideo
Period9/11/1512/11/15

Keywords

  • ADNI
  • Alzheimer
  • Classification
  • Imputation
  • Missing data

Fingerprint

Dive into the research topics of 'Evaluating imputation techniques for missing data in ADNI: A patient classification study'. Together they form a unique fingerprint.

Cite this