TY - JOUR
T1 - Estimation of Xmax for air showers measured at IceCube with elevated radio antennas of a prototype surface station
AU - The IceCube Collaboration
AU - Abbasi, R.
AU - Ackermann, M.
AU - Adams, J.
AU - Agarwalla, S. K.
AU - Aguilar, J. A.
AU - Ahlers, M.
AU - Alameddine, J. M.
AU - Amin, N. M.
AU - Andeen, K.
AU - Anton, G.
AU - Argüelles, C.
AU - Ashida, Y.
AU - Athanasiadou, S.
AU - Axani, S. N.
AU - Bai, X.
AU - Balagopal, A. V.
AU - Baricevic, M.
AU - Barwick, S. W.
AU - Basu, V.
AU - Bay, R.
AU - Beatty, J. J.
AU - Becker Tjus, J.
AU - Beise, J.
AU - Bellenghi, C.
AU - Benning, C.
AU - BenZvi, S.
AU - Berley, D.
AU - Bernardini, E.
AU - Besson, D. Z.
AU - Blaufuss, E.
AU - Blot, S.
AU - Bontempo, F.
AU - Book, J. Y.
AU - Boscolo Meneguolo, C.
AU - Böser, S.
AU - Botner, O.
AU - Böttcher, J.
AU - Bourbeau, E.
AU - Braun, J.
AU - Brinson, B.
AU - Brostean-Kaiser, J.
AU - Burley, R. T.
AU - Busse, R. S.
AU - Butterfield, D.
AU - Campana, M. A.
AU - Carloni, K.
AU - Carnie-Bronca, E. G.
AU - Chattopadhyay, S.
AU - Chau, N.
AU - Resconi, E.
N1 - Publisher Copyright:
© Copyright owned by the author(s) under the terms of the Creative Commons.
PY - 2024/9/27
Y1 - 2024/9/27
N2 - The IceCube Neutrino Observatory at the geographic South Pole is, with its surface and in-ice detectors, used for both neutrino and cosmic-ray physics. The surface array, named IceTop, consists of ice-Cherenkov tanks grouped in 81 pairs spanning a 1 km2 area. An enhancement of the surface array, composed of elevated scintillation panels and radio antennas, was designed over the last years in order to increase the scientific capabilities of IceTop. The surface radio antennas, in particular, will be able to reconstruct Xmax, an observable widely used to determine the mass composition of cosmic rays. A complete prototype station of this enhanced array was deployed in the Austral summer of 2019/20 at the South Pole. This station comprises three antennas and eight scintillation panels, arranged in a three-arms star shape. The nominal frequency band of the radio antennas is 70 to 350 MHz. In this work, we use a state-of-the-art reconstruction method in which observed events are compared directly to CoREAS simulations to obtain an estimation of the air-shower variables, in particular, energy and Xmax. We will show the results in this unique frequency band using the three prototype antennas.
AB - The IceCube Neutrino Observatory at the geographic South Pole is, with its surface and in-ice detectors, used for both neutrino and cosmic-ray physics. The surface array, named IceTop, consists of ice-Cherenkov tanks grouped in 81 pairs spanning a 1 km2 area. An enhancement of the surface array, composed of elevated scintillation panels and radio antennas, was designed over the last years in order to increase the scientific capabilities of IceTop. The surface radio antennas, in particular, will be able to reconstruct Xmax, an observable widely used to determine the mass composition of cosmic rays. A complete prototype station of this enhanced array was deployed in the Austral summer of 2019/20 at the South Pole. This station comprises three antennas and eight scintillation panels, arranged in a three-arms star shape. The nominal frequency band of the radio antennas is 70 to 350 MHz. In this work, we use a state-of-the-art reconstruction method in which observed events are compared directly to CoREAS simulations to obtain an estimation of the air-shower variables, in particular, energy and Xmax. We will show the results in this unique frequency band using the three prototype antennas.
UR - http://www.scopus.com/inward/record.url?scp=85212275091&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85212275091
SN - 1824-8039
VL - 444
JO - Proceedings of Science
JF - Proceedings of Science
M1 - 326
T2 - 38th International Cosmic Ray Conference, ICRC 2023
Y2 - 26 July 2023 through 3 August 2023
ER -