TY - GEN
T1 - Escaping saddle points with adaptive gradient methods
AU - Staib, Matthew
AU - Reddi, Sashank
AU - Kale, Satyen
AU - Kumar, Sanjiv
AU - Sra, Suvrit
N1 - Publisher Copyright:
© 2019 International Machine Learning Society (IMLS).
PY - 2019
Y1 - 2019
N2 - Adaptive methods such as Adam and RMSProp are widely used in deep learning but are not well understood. In this paper, we seek a crisp, clean and precise characterization of their behavior in nonconvex settings. To this end, we first provide a novel view of adaptive methods as preconditioned SGD, where the preconditioner is estimated in an online manner. By studying the preconditioner on its own, we elucidate its purpose: it rescales the stochastic gradient noise to be isotropic near stationary points, which helps escape saddle points. Furthermore, we show that adaptive methods can efficiently estimate the aforementioned preconditioner. By gluing together these two components, we provide the first (to our knowledge) second-order convergence result for any adaptive method. The key insight from our analysis is that, compared to SGD, adaptive methods escape saddle points faster, and can converge faster overall to second-order stationary points.
AB - Adaptive methods such as Adam and RMSProp are widely used in deep learning but are not well understood. In this paper, we seek a crisp, clean and precise characterization of their behavior in nonconvex settings. To this end, we first provide a novel view of adaptive methods as preconditioned SGD, where the preconditioner is estimated in an online manner. By studying the preconditioner on its own, we elucidate its purpose: it rescales the stochastic gradient noise to be isotropic near stationary points, which helps escape saddle points. Furthermore, we show that adaptive methods can efficiently estimate the aforementioned preconditioner. By gluing together these two components, we provide the first (to our knowledge) second-order convergence result for any adaptive method. The key insight from our analysis is that, compared to SGD, adaptive methods escape saddle points faster, and can converge faster overall to second-order stationary points.
UR - http://www.scopus.com/inward/record.url?scp=85078254944&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85078254944
T3 - 36th International Conference on Machine Learning, ICML 2019
SP - 10420
EP - 10454
BT - 36th International Conference on Machine Learning, ICML 2019
PB - International Machine Learning Society (IMLS)
T2 - 36th International Conference on Machine Learning, ICML 2019
Y2 - 9 June 2019 through 15 June 2019
ER -