Error-related Potentials in a Virtual Pick-and-Place Experiment: Toward Real-world Shared-control

Viktorija Dimova-Edeleva, Oscar Soto Rivera, Riddhiman Laha, Luis F.C. Figueredo, Sami Haddadin, Melissa Zavaglia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In Human-Robot Collaboration setting a robot may be controlled by a user directly or through a Brain-Computer Interface that detects user intention, and it may act as an autonomous agent. As such interaction increases in complexity, conflicts become inevitable. Goal conflicts can arise from different sources, for instance, interface mistakes - related to misinterpretation of human's intention - or errors of the autonomous system to address task and human's expectations. Such conflicts evoke different spontaneous responses in the human's brain, which could be used to regulate intrinsic task parameters and to improve system response to errors - leading to improved transparency, performance, and safety. To study the possibility of detecting interface and agent errors, we designed a virtual pick and place task with sequential human and robot responsibility and recorded the electroencephalography (EEG) activity of six participants. In the virtual environment, the robot received a command from the participants through a computer keyboard or it moved as autonomous agent. In both cases, artificial errors were defined to occur in 20% - 25% of the trials. We found differences in the responses to interface and agent errors. From the EEG data, correct trials, interface errors, and agent errors were truly predicted for 51.62% ± 9.99% (chance level 38.21%) of the pick movements and 46.84%±6.62% (chance level 36.99%) for the place movements in a pseudo-asynchronous fashion. Our study suggests that in a human-robot collaboration setting one may improve the future performance of a system with intention detection and autonomous modes. Specific examples could be Neural Interfaces that replace and restore motor functions.

Original languageEnglish
Title of host publication2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350324471
DOIs
StatePublished - 2023
Event45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Sydney, Australia
Duration: 24 Jul 202327 Jul 2023

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Country/TerritoryAustralia
CitySydney
Period24/07/2327/07/23

Fingerprint

Dive into the research topics of 'Error-related Potentials in a Virtual Pick-and-Place Experiment: Toward Real-world Shared-control'. Together they form a unique fingerprint.

Cite this