Entwicklung eines bionisch inspirierten, mikromechanischen Biegewandlers für effizienten fluidischen Massentransport

Translated title of the contribution: Design of a bionically inspired micro-mechanical bending actuator for efficient fluidic mass transport

R. Behlert, M. Gehring, H. Mehner, R. Wieland, G. Schrag

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A novel, integrated micromechanical actuator based on the principle of undulatory fish locomotion and intended for efficient on-chip cooling or venting applications is conceived and designed for an aluminum nitride-based thin-film technology. The results of piezoelectric-mechanical simulations prove that an undulatory motion of the fin-like micro-flapper can be generated. Subsequent fluidic investigations show, that this motion pattern yields a significant higher, directed fluidic net flow compared to resonant-like motion. First prototypes have been manufactured and characterized applying laser Doppler vibrometry and white light interferometry.

Translated title of the contributionDesign of a bionically inspired micro-mechanical bending actuator for efficient fluidic mass transport
Original languageGerman
Title of host publicationMikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings
PublisherVDE VERLAG GMBH
Pages207-210
Number of pages4
ISBN (Electronic)9783800744916
StatePublished - 2017
EventMikroSystemTechnik Kongress 2017: MEMS, Mikroelektronik, Systeme - MikroSystemTechnik Conference 2017: MEMS, Microelectronics, Systems - Munchen, Germany
Duration: 23 Oct 201725 Oct 2017

Publication series

NameMikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings

Conference

ConferenceMikroSystemTechnik Kongress 2017: MEMS, Mikroelektronik, Systeme - MikroSystemTechnik Conference 2017: MEMS, Microelectronics, Systems
Country/TerritoryGermany
CityMunchen
Period23/10/1725/10/17

Fingerprint

Dive into the research topics of 'Design of a bionically inspired micro-mechanical bending actuator for efficient fluidic mass transport'. Together they form a unique fingerprint.

Cite this