TY - JOUR

T1 - Entropy production and the geometry of dissipative evolution equations

AU - Reina, Celia

AU - Zimmer, Johannes

N1 - Publisher Copyright:
© 2015 American Physical Society.

PY - 2015/11/13

Y1 - 2015/11/13

N2 - Purely dissipative evolution equations are often cast as gradient flow structures, ż=K(z)DS(z), where the variable z of interest evolves towards the maximum of a functional S according to a metric defined by an operator K. While the functional often follows immediately from physical considerations (e.g., the thermodynamic entropy), the operator K and the associated geometry does not necessarily do so (e.g., Wasserstein geometry for diffusion). In this paper, we present a variational statement in the sense of maximum entropy production that directly delivers a relationship between the operator K and the constraints of the system. In particular, the Wasserstein metric naturally arises here from the conservation of mass or energy, and depends on the Onsager resistivity tensor, which, itself, may be understood as another metric, as in the steepest entropy ascent formalism. This variational principle is exemplified here for the simultaneous evolution of conserved and nonconserved quantities in open systems. It thus extends the classical Onsager flux-force relationships and the associated variational statement to variables that do not have a flux associated to them. We further show that the metric structure K is intimately linked to the celebrated Freidlin-Wentzell theory of stochastically perturbed gradient flows, and that the proposed variational principle encloses an infinite-dimensional fluctuation-dissipation statement.

AB - Purely dissipative evolution equations are often cast as gradient flow structures, ż=K(z)DS(z), where the variable z of interest evolves towards the maximum of a functional S according to a metric defined by an operator K. While the functional often follows immediately from physical considerations (e.g., the thermodynamic entropy), the operator K and the associated geometry does not necessarily do so (e.g., Wasserstein geometry for diffusion). In this paper, we present a variational statement in the sense of maximum entropy production that directly delivers a relationship between the operator K and the constraints of the system. In particular, the Wasserstein metric naturally arises here from the conservation of mass or energy, and depends on the Onsager resistivity tensor, which, itself, may be understood as another metric, as in the steepest entropy ascent formalism. This variational principle is exemplified here for the simultaneous evolution of conserved and nonconserved quantities in open systems. It thus extends the classical Onsager flux-force relationships and the associated variational statement to variables that do not have a flux associated to them. We further show that the metric structure K is intimately linked to the celebrated Freidlin-Wentzell theory of stochastically perturbed gradient flows, and that the proposed variational principle encloses an infinite-dimensional fluctuation-dissipation statement.

UR - http://www.scopus.com/inward/record.url?scp=84949202198&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.92.052117

DO - 10.1103/PhysRevE.92.052117

M3 - Article

AN - SCOPUS:84949202198

SN - 1539-3755

VL - 92

JO - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

JF - Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics

IS - 5

M1 - 052117

ER -