Entropy minimization for convex relaxation approaches

Mohamed Souiai, Martin R. Oswald, Youngwook Kee, Junmo Kim, Marc Pollefeys, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Despite their enormous success in solving hard combinatorial problems, convex relaxation approaches often suffer from the fact that the computed solutions are far from binary and that subsequent heuristic binarization may substantially degrade the quality of computed solutions. In this paper, we propose a novel relaxation technique which incorporates the entropy of the objective variable as a measure of relaxation tightness. We show both theoretically and experimentally that augmenting the objective function with an entropy term gives rise to more binary solutions and consequently solutions with a substantially tighter optimality gap. We use difference of convex function (DC) programming as an efficient and provably convergent solver for the arising convex-concave minimization problem. We evaluate this approach on three prominent non-convex computer vision challenges: multi-label inpainting, image segmentation and spatio-temporal multi-view reconstruction. These experiments show that our approach consistently yields better solutions with respect to the original integral optimization problem.

Original languageEnglish
Title of host publication2015 International Conference on Computer Vision, ICCV 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1778-1786
Number of pages9
ISBN (Electronic)9781467383912
DOIs
StatePublished - 17 Feb 2015
Event15th IEEE International Conference on Computer Vision, ICCV 2015 - Santiago, Chile
Duration: 11 Dec 201518 Dec 2015

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
Volume2015 International Conference on Computer Vision, ICCV 2015
ISSN (Print)1550-5499

Conference

Conference15th IEEE International Conference on Computer Vision, ICCV 2015
Country/TerritoryChile
CitySantiago
Period11/12/1518/12/15

Fingerprint

Dive into the research topics of 'Entropy minimization for convex relaxation approaches'. Together they form a unique fingerprint.

Cite this