Enriching Thermal Point Clouds of Buildings using Semantic 3D building Models

Research output: Contribution to journalConference articlepeer-review

Abstract

Thermal point clouds integrate thermal radiation and laser point clouds effectively. However, the semantic information for the interpretation of building thermal point clouds can hardly be precisely inferred. Transferring the semantics encapsulated in 3D building models at Level of Detail (LoD)3 has a potential to fill this gap. In this work, we propose a workflow enriching thermal point clouds with the geo-position and semantics of LoD3 building models, which utilizes features of both modalities: model point clouds are generated from LoD3 models, and thermal point clouds are co-registered by coarse-to-fine registration. The proposed method can automatically co-register the point clouds from different sources and enrich the thermal point cloud in facade-detailed semantics. The enriched thermal point cloud supports thermal analysis and can facilitate the development of currently scarce deep learning models operating directly on thermal point clouds.

Original languageEnglish
Pages (from-to)341-348
Number of pages8
JournalISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volume10
Issue number4/W5-2024
DOIs
StatePublished - 27 Jun 2024
Event19th 3D GeoInfo Conference 2024 - Vigo, Spain
Duration: 1 Jul 20243 Jul 2024

Keywords

  • Co-registration
  • LoD3 building model
  • Point clouds
  • Thermal InfraRed (TIR) images
  • semantic information

Fingerprint

Dive into the research topics of 'Enriching Thermal Point Clouds of Buildings using Semantic 3D building Models'. Together they form a unique fingerprint.

Cite this