Enhancing Robustness in Manipulability Assessment: The Pseudo-Ellipsoid Approach

Erfan Shahriari, Kim Kristin Peper, Matej Hoffmann, Sami Haddadin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Manipulability analysis is a methodology employed to assess the capacity of an articulated system, at a specific configuration, to produce motion or exert force in diverse directions. The conventional method entails generating a virtual ellipsoid using the system's configuration and model. Yet, this approach poses challenges when applied to systems such as the human body, where direct access to such information is limited, necessitating reliance on estimations. Any inaccuracies in these estimations can distort the ellipsoid's configuration, potentially compromising the accuracy of the manipulability assessment. To address this issue, this article extends the standard approach by introducing the concept of the manipulability pseudo-ellipsoid. Through a series of theoretical analyses, simulations, and experiments, the article demonstrates that the proposed method exhibits reduced sensitivity to noise in sensory information, consequently enhancing the robustness of the approach.

Original languageEnglish
Title of host publication2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1329-1336
Number of pages8
ISBN (Electronic)9798350377705
DOIs
StatePublished - 2024
Event2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024 - Abu Dhabi, United Arab Emirates
Duration: 14 Oct 202418 Oct 2024

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2024 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2024
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period14/10/2418/10/24

Fingerprint

Dive into the research topics of 'Enhancing Robustness in Manipulability Assessment: The Pseudo-Ellipsoid Approach'. Together they form a unique fingerprint.

Cite this