TY - JOUR
T1 - Enhancing Patient Acceptance of Robotic Ultrasound through Conversational Virtual Agent and Immersive Visualizations
AU - Song, Tianyu
AU - Pabst, Felix
AU - Eck, Ulrich
AU - Navab, Nassir
N1 - Publisher Copyright:
© 1995-2012 IEEE.
PY - 2025
Y1 - 2025
N2 - Robotic ultrasound systems have the potential to improve medical diagnostics, but patient acceptance remains a key challenge. To address this, we propose a novel system that combines an AI-based virtual agent, powered by a large language model (LLM), with three mixed reality visualizations aimed at enhancing patient comfort and trust. The LLM enables the virtual assistant to engage in natural, conversational dialogue with patients, answering questions in any format and offering real-time reassurance, creating a more intelligent and reliable interaction. The virtual assistant is animated as controlling the ultrasound probe, giving the impression that the robot is guided by the assistant. The first visualization employs augmented reality (AR), allowing patients to see the real world and the robot with the virtual avatar superimposed. The second visualization is an augmented virtuality (AV) environment, where the real-world body part being scanned is visible, while a 3D Gaussian Splatting reconstruction of the room, excluding the robot, forms the virtual environment. The third is a fully immersive virtual reality (VR) experience, featuring the same 3D reconstruction but entirely virtual, where the patient sees a virtual representation of their body being scanned in a robot-free environment. In this case, the virtual ultrasound probe, mirrors the movement of the probe controlled by the robot, creating a synchronized experience as it touches and moves over the patient's virtual body. We conducted a comprehensive agent-guided robotic ultrasound study with all participants, comparing these visualizations against a standard robotic ultrasound procedure. Results showed significant improvements in patient trust, acceptance, and comfort.
AB - Robotic ultrasound systems have the potential to improve medical diagnostics, but patient acceptance remains a key challenge. To address this, we propose a novel system that combines an AI-based virtual agent, powered by a large language model (LLM), with three mixed reality visualizations aimed at enhancing patient comfort and trust. The LLM enables the virtual assistant to engage in natural, conversational dialogue with patients, answering questions in any format and offering real-time reassurance, creating a more intelligent and reliable interaction. The virtual assistant is animated as controlling the ultrasound probe, giving the impression that the robot is guided by the assistant. The first visualization employs augmented reality (AR), allowing patients to see the real world and the robot with the virtual avatar superimposed. The second visualization is an augmented virtuality (AV) environment, where the real-world body part being scanned is visible, while a 3D Gaussian Splatting reconstruction of the room, excluding the robot, forms the virtual environment. The third is a fully immersive virtual reality (VR) experience, featuring the same 3D reconstruction but entirely virtual, where the patient sees a virtual representation of their body being scanned in a robot-free environment. In this case, the virtual ultrasound probe, mirrors the movement of the probe controlled by the robot, creating a synchronized experience as it touches and moves over the patient's virtual body. We conducted a comprehensive agent-guided robotic ultrasound study with all participants, comparing these visualizations against a standard robotic ultrasound procedure. Results showed significant improvements in patient trust, acceptance, and comfort.
KW - Mixed Reality
KW - Robotic Ultrasound
KW - Trust and Acceptance
KW - Virtual Agent
UR - http://www.scopus.com/inward/record.url?scp=105000063426&partnerID=8YFLogxK
U2 - 10.1109/TVCG.2025.3549181
DO - 10.1109/TVCG.2025.3549181
M3 - Article
AN - SCOPUS:105000063426
SN - 1077-2626
JO - IEEE Transactions on Visualization and Computer Graphics
JF - IEEE Transactions on Visualization and Computer Graphics
ER -