Enhancing Haloarene Coupling Reaction Efficiency on an Oxide Surface by Metal Atom Addition

Mikel Abadia, Ignacio Piquero-Zulaica, Jens Brede, Alberto Verdini, Luca Floreano, Johannes V. Barth, Jorge Lobo-Checa, Martina Corso, Celia Rogero

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The bottom-up synthesis of carbon-based nanomaterials directly on semiconductor surfaces allows for the decoupling of their electronic and magnetic properties from the substrates. However, the typically reduced reactivity of such nonmetallic surfaces adversely affects the course of these reactions. Here, we achieve a high polymerization yield of halogenated polyphenyl molecular building blocks on the semiconducting TiO2(110) surface via concomitant surface decoration with cobalt atoms, which catalyze the Ullmann coupling reaction. Specifically, cobalt atoms trigger the debromination of 4,4″-dibromo-p-terphenyl molecules on TiO2(110) and mediate the formation of an intermediate organometallic phase already at room temperature (RT). As the debromination temperature is drastically reduced, homocoupling and polymerization readily proceed, preventing presursor desorption from the substrate and entailing a drastic increase of the poly-para-phenylene polymerization yield. The general efficacy of this mechanism is shown with an iodinated terphenyl derivative, which exhibits similar dehalogenation and reaction yield.

Original languageEnglish
Pages (from-to)1923-1930
Number of pages8
JournalNano Letters
Volume24
Issue number6
DOIs
StatePublished - 14 Feb 2024

Keywords

  • On-surface synthesis
  • Oxides
  • Single-atom catalyst
  • Ullmann coupling
  • X-ray photoelectron spectroscopy

Fingerprint

Dive into the research topics of 'Enhancing Haloarene Coupling Reaction Efficiency on an Oxide Surface by Metal Atom Addition'. Together they form a unique fingerprint.

Cite this