TY - JOUR
T1 - Enhanced anti-bacterial properties and thermal regulation via photothermal conversion with localized surface plasmon resonance effect in cotton fabrics
AU - Hu, Neng
AU - Zhu, Zejie
AU - Cai, Xin
AU - Müller-Buschbaum, Peter
AU - Zhong, Qi
N1 - Publisher Copyright:
© 2024 Elsevier Inc.
PY - 2025/3
Y1 - 2025/3
N2 - Enhanced anti-bacterial properties and thermal regulation are realized in cotton fabrics cross-linked with hybrid poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate-co-ethylene glycol methacrylate) nanogels containing gold nanoparticles (Au NPs), denoted as hybrid P(MA-co-MA300-co-EGMA)/Au nanogels. Pure P(MA-co-MA300-co-EGMA) nanogels are synthesized by emulsion polymerization as carriers and then embedded with Au NPs via in-situ reduction. By applying 1,2,3,4-butanetetracarboxylic acid as a cross-linker and changing the amount of hybrid P(MA-co-MA300-co-EGMA)/Au nanogels in solution, the weight gain ratios of hybrid nanogels on cotton fabrics are set as 10 % (CHN-10) and 20 % (CHN-20). Due to the densely packed structure of the hybrid nanogels on the surface, the localized surface plasmon resonance (LSPR) effect of the Au NPs improves the photothermal conversion capability and converts the absorbed light energy into thermal energy. Simply illuminating with visible light, the surface temperature of CHN-20 pronouncedly increases from 20.4 to 43.0 °C in 50 s. The increased local temperature induces the denaturation of protein and the death of bacteria on the surface. Thus, an illumination with visible light for 2 h results in an anti-bacterial rate for S. aureus of 100 % for CHN-20. Additionally, it presents an excellent thermal regulation capability via photothermal conversion and can be used for continuously maintaining human body temperature in cold areas. Because no additional chemical agents and external power source are required for the anti-bacterial properties and thermal regulation, the obtained cotton fabrics cross-linked with hybrid P(MA-co-MA300-co-EGMA)/Au nanogels are eco-friendly and suitable for smart textiles in daily wear.
AB - Enhanced anti-bacterial properties and thermal regulation are realized in cotton fabrics cross-linked with hybrid poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate-co-ethylene glycol methacrylate) nanogels containing gold nanoparticles (Au NPs), denoted as hybrid P(MA-co-MA300-co-EGMA)/Au nanogels. Pure P(MA-co-MA300-co-EGMA) nanogels are synthesized by emulsion polymerization as carriers and then embedded with Au NPs via in-situ reduction. By applying 1,2,3,4-butanetetracarboxylic acid as a cross-linker and changing the amount of hybrid P(MA-co-MA300-co-EGMA)/Au nanogels in solution, the weight gain ratios of hybrid nanogels on cotton fabrics are set as 10 % (CHN-10) and 20 % (CHN-20). Due to the densely packed structure of the hybrid nanogels on the surface, the localized surface plasmon resonance (LSPR) effect of the Au NPs improves the photothermal conversion capability and converts the absorbed light energy into thermal energy. Simply illuminating with visible light, the surface temperature of CHN-20 pronouncedly increases from 20.4 to 43.0 °C in 50 s. The increased local temperature induces the denaturation of protein and the death of bacteria on the surface. Thus, an illumination with visible light for 2 h results in an anti-bacterial rate for S. aureus of 100 % for CHN-20. Additionally, it presents an excellent thermal regulation capability via photothermal conversion and can be used for continuously maintaining human body temperature in cold areas. Because no additional chemical agents and external power source are required for the anti-bacterial properties and thermal regulation, the obtained cotton fabrics cross-linked with hybrid P(MA-co-MA300-co-EGMA)/Au nanogels are eco-friendly and suitable for smart textiles in daily wear.
KW - Anti-bacterial properties
KW - Au nanoparticles
KW - Cotton fabrics
KW - Hybrid nanogels
KW - Thermal regulation
UR - http://www.scopus.com/inward/record.url?scp=85209927066&partnerID=8YFLogxK
U2 - 10.1016/j.jcis.2024.11.138
DO - 10.1016/j.jcis.2024.11.138
M3 - Article
AN - SCOPUS:85209927066
SN - 0021-9797
VL - 681
SP - 25
EP - 34
JO - Journal of Colloid and Interface Science
JF - Journal of Colloid and Interface Science
ER -