TY - JOUR
T1 - Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning
AU - Bing, Zhenshan
AU - Lemke, Christian
AU - Cheng, Long
AU - Huang, Kai
AU - Knoll, Alois
N1 - Publisher Copyright:
© 2020 Elsevier Ltd
PY - 2020/9
Y1 - 2020/9
N2 - Similar to real snakes in nature, the flexible trunks of snake-like robots enhance their movement capabilities and adaptabilities in diverse environments. However, this flexibility corresponds to a complex control task involving highly redundant degrees of freedom, where traditional model-based methods usually fail to propel the robots energy-efficiently and adaptively to unforeseeable joint damage. In this work, we present an approach for designing an energy-efficient and damage-recovery slithering gait for a snake-like robot using the reinforcement learning (RL) algorithm and the inverse reinforcement learning (IRL) algorithm. Specifically, we first present an RL-based controller for generating locomotion gaits at a wide range of velocities, which is trained using the proximal policy optimization (PPO) algorithm. Then, by taking the RL-based controller as an expert and collecting trajectories from it, we train an IRL-based controller using the adversarial inverse reinforcement learning (AIRL) algorithm. For the purpose of comparison, a traditional parameterized gait controller is presented as the baseline and the parameter sets are optimized using the grid search and Bayesian optimization algorithm. Based on the analysis of the simulation results, we first demonstrate that this RL-based controller exhibits very natural and adaptive movements, which are also substantially more energy-efficient than the gaits generated by the parameterized controller. We then demonstrate that the IRL-based controller cannot only exhibit similar performances as the RL-based controller, but can also recover from the unpredictable damage body joints and still outperform the model-based controller, which has an undamaged body, in terms of energy efficiency. Videos can be viewed at https://videoviewsite.wixsite.com/rlsnake.
AB - Similar to real snakes in nature, the flexible trunks of snake-like robots enhance their movement capabilities and adaptabilities in diverse environments. However, this flexibility corresponds to a complex control task involving highly redundant degrees of freedom, where traditional model-based methods usually fail to propel the robots energy-efficiently and adaptively to unforeseeable joint damage. In this work, we present an approach for designing an energy-efficient and damage-recovery slithering gait for a snake-like robot using the reinforcement learning (RL) algorithm and the inverse reinforcement learning (IRL) algorithm. Specifically, we first present an RL-based controller for generating locomotion gaits at a wide range of velocities, which is trained using the proximal policy optimization (PPO) algorithm. Then, by taking the RL-based controller as an expert and collecting trajectories from it, we train an IRL-based controller using the adversarial inverse reinforcement learning (AIRL) algorithm. For the purpose of comparison, a traditional parameterized gait controller is presented as the baseline and the parameter sets are optimized using the grid search and Bayesian optimization algorithm. Based on the analysis of the simulation results, we first demonstrate that this RL-based controller exhibits very natural and adaptive movements, which are also substantially more energy-efficient than the gaits generated by the parameterized controller. We then demonstrate that the IRL-based controller cannot only exhibit similar performances as the RL-based controller, but can also recover from the unpredictable damage body joints and still outperform the model-based controller, which has an undamaged body, in terms of energy efficiency. Videos can be viewed at https://videoviewsite.wixsite.com/rlsnake.
KW - Damage recovery
KW - Inverse reinforcement learning
KW - Motion planning
KW - Reinforcement learning
KW - Snake-like robot
UR - http://www.scopus.com/inward/record.url?scp=85086821061&partnerID=8YFLogxK
U2 - 10.1016/j.neunet.2020.05.029
DO - 10.1016/j.neunet.2020.05.029
M3 - Article
C2 - 32593929
AN - SCOPUS:85086821061
SN - 0893-6080
VL - 129
SP - 323
EP - 333
JO - Neural Networks
JF - Neural Networks
ER -