TY - GEN
T1 - End to End Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle
AU - Bing, Zhenshan
AU - Meschede, Claus
AU - Huang, Kai
AU - Chen, Guang
AU - Rohrbein, Florian
AU - Akl, Mahmoud
AU - Knoll, Alois
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/9/10
Y1 - 2018/9/10
N2 - Learning-based methods have demonstrated clear advantages in controlling robot tasks, such as the information fusion abilities, strong robustness, and high accuracy. Meanwhile, the on-board systems of robots have limited computation and energy resources, which are contradictory with state-of-the-art learning approaches. They are either too lightweight to solve complex problems or too heavyweight to be used for mobile applications. On the other hand, training spiking neural networks (SNNs) with biological plausibility has great potentials of performing fast computation and energy efficiency. However, the lack of effective learning rules for SNNs impedes their wide usage in mobile robot applications. This paper addresses the problem by introducing an end to end learning approach of spiking neural networks for a lane keeping vehicle. We consider the reward-modulated spike-timing-dependent-plasticity (R-STDP) as a promising solution in training SNNs, since it combines the advantages of both reinforcement learning and the well-known STDP. We test our approach in three scenarios that a Pioneer robot is controlled to keep lanes based on an SNN. Specifically, the lane information is encoded by the event data from a neuromorphic vision sensor. The SNN is constructed using R-STDP synapses in an all-to-all fashion. We demonstrate the advantages of our approach in terms of the lateral localization accuracy by comparing with other state-of-the-art learning algorithms based on SNNs.
AB - Learning-based methods have demonstrated clear advantages in controlling robot tasks, such as the information fusion abilities, strong robustness, and high accuracy. Meanwhile, the on-board systems of robots have limited computation and energy resources, which are contradictory with state-of-the-art learning approaches. They are either too lightweight to solve complex problems or too heavyweight to be used for mobile applications. On the other hand, training spiking neural networks (SNNs) with biological plausibility has great potentials of performing fast computation and energy efficiency. However, the lack of effective learning rules for SNNs impedes their wide usage in mobile robot applications. This paper addresses the problem by introducing an end to end learning approach of spiking neural networks for a lane keeping vehicle. We consider the reward-modulated spike-timing-dependent-plasticity (R-STDP) as a promising solution in training SNNs, since it combines the advantages of both reinforcement learning and the well-known STDP. We test our approach in three scenarios that a Pioneer robot is controlled to keep lanes based on an SNN. Specifically, the lane information is encoded by the event data from a neuromorphic vision sensor. The SNN is constructed using R-STDP synapses in an all-to-all fashion. We demonstrate the advantages of our approach in terms of the lateral localization accuracy by comparing with other state-of-the-art learning algorithms based on SNNs.
UR - http://www.scopus.com/inward/record.url?scp=85061375492&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2018.8460482
DO - 10.1109/ICRA.2018.8460482
M3 - Conference contribution
AN - SCOPUS:85061375492
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 4725
EP - 4732
BT - 2018 IEEE International Conference on Robotics and Automation, ICRA 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE International Conference on Robotics and Automation, ICRA 2018
Y2 - 21 May 2018 through 25 May 2018
ER -