Abstract
Grasping and manipulating various kinds of objects cooperatively is the core skill of a dual-arm robot when deployed as an autonomous agent in a human-centered environment. This requires fully exploiting the robot's versatility and dexterity. In this work, we propose a general framework for dual-arm manipulators that contains two correlative modules. The learning-based dexterity-reachability-aware perception module deals with vision-based bimanual grasping. It employs an end-to-end evaluation network and probabilistic modeling of the robot's reachability to deliver feasible and dexterity-optimum grasp pairs for unseen objects. The optimization-based versatility-oriented control module addresses the online cooperative manipulation control by using a hierarchical quadratic programming formulation. Self-collision avoidance and dual-arm manipulability ellipsoid tracking with high reliability and fidelity are simultaneously achieved based on a learned lightweight distance proxy function and a speed-level tracking technique on Riemannian manifold. Intrinsic system safety is guaranteed, and a novel interface for skill transfer is enabled. A long-horizon rearrangement experiment, a bimanual turnover manipulation, and multiple comparative performance evaluation verify the effectiveness of the proposed framework.
Original language | English |
---|---|
Pages (from-to) | 2024-2045 |
Number of pages | 22 |
Journal | IEEE Transactions on Robotics |
Volume | 40 |
DOIs | |
State | Published - 2024 |
Keywords
- Bimanual grasping
- dual-arm manipulators
- machine learning
- self-collision avoidance