TY - JOUR
T1 - Emulsifying Properties of Natural Extracts from Panax ginseng L
AU - Ralla, Theo
AU - Herz, Eva
AU - Salminen, Hanna
AU - Edelmann, Matthias
AU - Dawid, Corinna
AU - Hofmann, Thomas
AU - Weiss, Jochen
N1 - Publisher Copyright:
© 2017, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - One of the major trends within the food industry is the replacement of synthetically-derived food additives (e.g. emulsifiers) by natural alternatives. A promising approach is the utilization of saponins that have attracted attention due to their effective emulsifying properties and their natural origin from plants. Panax ginseng is well known in Asian countries for its health benefits that are mainly attributed to amphiphilic triterpene saponins, namely ginsenosides. In this study, we characterized two food-grade ginseng extracts (Finzelberg: FB; CheilJedang: CJ) regarding their chemical composition, surface activity, and effectiveness as emulsifier. Both ginseng extracts reduced the interfacial tension appreciably by up to 80%, and formed negatively charged oil-in-water emulsions at a low emulsifier-to-oil ratio. Ginseng FB formed small submicron-sized emulsions, whereas the mean particle sizes with ginseng CJ were much larger (up to 25 μm). Both ginseng extract-stabilized emulsions were stable towards a range of stresses (pH 4–9, ≤100 mM NaCl) or when stored at ≤25 °C for four weeks. However, the emulsions showed instability at highly acidic conditions (pH 2–3), during the 4-week storage at an elevated temperature (55 °C), and at high ionic strengths (≥250 mM NaCl, >10 mM CaCl2), which was mainly attributed to the reduction or screening of electrostatic repulsion. Emulsion formation and stabilization was proposed to occur via formation of a saponin or biogenic saponin-protein complex layer leading to a stronger interfacial network. In conclusion, both ginseng extracts were able to form emulsions, although ginseng FB extract showed especially remarkable emulsifying properties, similar to the highly effective Quillaja saponaria extract. The results may therefore be helpful in replacing other emulsifiers and formulating emulsion products with varying particle size ranges.
AB - One of the major trends within the food industry is the replacement of synthetically-derived food additives (e.g. emulsifiers) by natural alternatives. A promising approach is the utilization of saponins that have attracted attention due to their effective emulsifying properties and their natural origin from plants. Panax ginseng is well known in Asian countries for its health benefits that are mainly attributed to amphiphilic triterpene saponins, namely ginsenosides. In this study, we characterized two food-grade ginseng extracts (Finzelberg: FB; CheilJedang: CJ) regarding their chemical composition, surface activity, and effectiveness as emulsifier. Both ginseng extracts reduced the interfacial tension appreciably by up to 80%, and formed negatively charged oil-in-water emulsions at a low emulsifier-to-oil ratio. Ginseng FB formed small submicron-sized emulsions, whereas the mean particle sizes with ginseng CJ were much larger (up to 25 μm). Both ginseng extract-stabilized emulsions were stable towards a range of stresses (pH 4–9, ≤100 mM NaCl) or when stored at ≤25 °C for four weeks. However, the emulsions showed instability at highly acidic conditions (pH 2–3), during the 4-week storage at an elevated temperature (55 °C), and at high ionic strengths (≥250 mM NaCl, >10 mM CaCl2), which was mainly attributed to the reduction or screening of electrostatic repulsion. Emulsion formation and stabilization was proposed to occur via formation of a saponin or biogenic saponin-protein complex layer leading to a stronger interfacial network. In conclusion, both ginseng extracts were able to form emulsions, although ginseng FB extract showed especially remarkable emulsifying properties, similar to the highly effective Quillaja saponaria extract. The results may therefore be helpful in replacing other emulsifiers and formulating emulsion products with varying particle size ranges.
KW - Emulsifier
KW - Emulsion
KW - Ginseng
KW - Ginsenoside
KW - Saponin
KW - Stability
UR - http://www.scopus.com/inward/record.url?scp=85036559073&partnerID=8YFLogxK
U2 - 10.1007/s11483-017-9504-5
DO - 10.1007/s11483-017-9504-5
M3 - Article
AN - SCOPUS:85036559073
SN - 1557-1858
VL - 12
SP - 479
EP - 490
JO - Food Biophysics
JF - Food Biophysics
IS - 4
ER -