Emergence of local and global synaptic organization on cortical dendrites

Jan H. Kirchner, Julijana Gjorgjieva

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Synaptic inputs on cortical dendrites are organized with remarkable subcellular precision at the micron level. This organization emerges during early postnatal development through patterned spontaneous activity and manifests both locally where nearby synapses are significantly correlated, and globally with distance to the soma. We propose a biophysically motivated synaptic plasticity model to dissect the mechanistic origins of this organization during development and elucidate synaptic clustering of different stimulus features in the adult. Our model captures local clustering of orientation in ferret and receptive field overlap in mouse visual cortex based on the receptive field diameter and the cortical magnification of visual space. Including action potential back-propagation explains branch clustering heterogeneity in the ferret and produces a global retinotopy gradient from soma to dendrite in the mouse. Therefore, by combining activity-dependent synaptic competition and species-specific receptive fields, our framework explains different aspects of synaptic organization regarding stimulus features and spatial scales.

Original languageEnglish
Article number4005
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - 1 Dec 2021

Fingerprint

Dive into the research topics of 'Emergence of local and global synaptic organization on cortical dendrites'. Together they form a unique fingerprint.

Cite this