TY - GEN
T1 - Efficient trajectory planning for high speed flight in unknown environments
AU - Ryll, Markus
AU - Ware, John
AU - Carter, John
AU - Roy, Nick
N1 - Publisher Copyright:
© 2019 IEEE.
PY - 2019/5
Y1 - 2019/5
N2 - There has been considerable recent work in motion planning for UAVs to enable aggressive, highly dynamic flight in known environments with motion capture systems. However, these existing planners have not been shown to enable the same kind of flight in unknown, outdoor environments. In this paper we present a receding horizon planning architecture that enables the fast replanning necessary for reactive obstacle avoidance by combining three techniques. First, we show how previous work in computationally efficient, closed-form trajectory generation method can be coupled with spatial partitioning data structures to reason about the geometry of the environment in real-time. Second, we show how to maintain safety margins during fast flight in unknown environments by planning velocities according to obstacle density. Third, our receding-horizon, sampling-based motion planner uses minimum-jerk trajectories and closed-loop tracking to enable smooth, robust, high-speed flight with the low angular rates necessary for accurate visual-inertial navigation. We compare against two state-of-the-art, reactive motion planners in simulation and benchmark solution quality against an offline global planner. Finally, we demonstrate our planner over 80 flights with a combined distance of 22km of autonomous quadrotor flights in an urban environment at speeds up to 9.4ms {-1}.
AB - There has been considerable recent work in motion planning for UAVs to enable aggressive, highly dynamic flight in known environments with motion capture systems. However, these existing planners have not been shown to enable the same kind of flight in unknown, outdoor environments. In this paper we present a receding horizon planning architecture that enables the fast replanning necessary for reactive obstacle avoidance by combining three techniques. First, we show how previous work in computationally efficient, closed-form trajectory generation method can be coupled with spatial partitioning data structures to reason about the geometry of the environment in real-time. Second, we show how to maintain safety margins during fast flight in unknown environments by planning velocities according to obstacle density. Third, our receding-horizon, sampling-based motion planner uses minimum-jerk trajectories and closed-loop tracking to enable smooth, robust, high-speed flight with the low angular rates necessary for accurate visual-inertial navigation. We compare against two state-of-the-art, reactive motion planners in simulation and benchmark solution quality against an offline global planner. Finally, we demonstrate our planner over 80 flights with a combined distance of 22km of autonomous quadrotor flights in an urban environment at speeds up to 9.4ms {-1}.
UR - http://www.scopus.com/inward/record.url?scp=85071467808&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2019.8793930
DO - 10.1109/ICRA.2019.8793930
M3 - Conference contribution
AN - SCOPUS:85071467808
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 732
EP - 738
BT - 2019 International Conference on Robotics and Automation, ICRA 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 International Conference on Robotics and Automation, ICRA 2019
Y2 - 20 May 2019 through 24 May 2019
ER -