Efficient trajectory planning for high speed flight in unknown environments

Markus Ryll, John Ware, John Carter, Nick Roy

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

54 Scopus citations

Abstract

There has been considerable recent work in motion planning for UAVs to enable aggressive, highly dynamic flight in known environments with motion capture systems. However, these existing planners have not been shown to enable the same kind of flight in unknown, outdoor environments. In this paper we present a receding horizon planning architecture that enables the fast replanning necessary for reactive obstacle avoidance by combining three techniques. First, we show how previous work in computationally efficient, closed-form trajectory generation method can be coupled with spatial partitioning data structures to reason about the geometry of the environment in real-time. Second, we show how to maintain safety margins during fast flight in unknown environments by planning velocities according to obstacle density. Third, our receding-horizon, sampling-based motion planner uses minimum-jerk trajectories and closed-loop tracking to enable smooth, robust, high-speed flight with the low angular rates necessary for accurate visual-inertial navigation. We compare against two state-of-the-art, reactive motion planners in simulation and benchmark solution quality against an offline global planner. Finally, we demonstrate our planner over 80 flights with a combined distance of 22km of autonomous quadrotor flights in an urban environment at speeds up to 9.4ms {-1}.

Original languageEnglish
Title of host publication2019 International Conference on Robotics and Automation, ICRA 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages732-738
Number of pages7
ISBN (Electronic)9781538660263
DOIs
StatePublished - May 2019
Externally publishedYes
Event2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Canada
Duration: 20 May 201924 May 2019

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2019 International Conference on Robotics and Automation, ICRA 2019
Country/TerritoryCanada
CityMontreal
Period20/05/1924/05/19

Fingerprint

Dive into the research topics of 'Efficient trajectory planning for high speed flight in unknown environments'. Together they form a unique fingerprint.

Cite this