Efficient Time-Domain Approach for Linear Response Functions

Michel Panhans, Frank Ortmann

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

We derive the general Kubo formula in a form that solely utilizes the time evolution of displacement operators. The derivation is based on the decomposition of the linear response function into its time-symmetric and time-antisymmetric parts. We relate this form to the well-known fluctuation-dissipation formula and discuss theoretical and numerical aspects of it. The approach is illustrated with an analytical example for magnetic resonance as well as a numerical example where we analyze the electrical conductivity tensor and the Chern insulating state of the disordered Haldane model. We introduce a highly efficient time-domain approach that describes the quantum dynamics of the resistivity of this model with an at least 1000-fold better performance in comparison to existing time-evolution schemes.

Original languageEnglish
Article number016601
JournalPhysical Review Letters
Volume127
Issue number1
DOIs
StatePublished - 2 Jul 2021

Fingerprint

Dive into the research topics of 'Efficient Time-Domain Approach for Linear Response Functions'. Together they form a unique fingerprint.

Cite this