Efficient structured matrix rank minimization

Adams Wei Yu, Wanli Ma, Yaoliang Yu, Jaime G. Carbonell, Suvrit Sra

Research output: Contribution to journalConference articlepeer-review

15 Scopus citations

Abstract

We study the problem of finding structured low-rank matrices using nuclear norm regularization where the structure is encoded by a linear map. In contrast to most known approaches for linearly structured rank minimization, we do not (a) use the full SVD; nor (b) resort to augmented Lagrangian techniques; nor (c) solve linear systems per iteration. Instead, we formulate the problem differently so that it is amenable to a generalized conditional gradient method, which results in a practical improvement with low per iteration computational cost. Numerical results show that our approach significantly outperforms state-of-the-art competitors in terms of running time, while effectively recovering low rank solutions in stochastic system realization and spectral compressed sensing problems.

Original languageEnglish
Pages (from-to)1350-1358
Number of pages9
JournalAdvances in Neural Information Processing Systems
Volume2
Issue numberJanuary
StatePublished - 2014
Externally publishedYes
Event28th Annual Conference on Neural Information Processing Systems 2014, NIPS 2014 - Montreal, Canada
Duration: 8 Dec 201413 Dec 2014

Fingerprint

Dive into the research topics of 'Efficient structured matrix rank minimization'. Together they form a unique fingerprint.

Cite this