Efficient online surface correction for real-time large-scale 3D reconstruction

Robert Maier, Raphael Schaller, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

14 Scopus citations

Abstract

State-of-the-art methods for large-scale 3D reconstruction from RGB-D sensors usually reduce drift in camera tracking by globally optimizing the estimated camera poses in real-time without simultaneously updating the reconstructed surface on pose changes. We propose an efficient on-the-fly surface correction method for globally consistent dense 3D reconstruction of large-scale scenes. Our approach uses a dense Visual RGB-D SLAM system that estimates the camera motion in real-time on a CPU and refines it in a global pose graph optimization. Consecutive RGB-D frames are locally fused into keyframes, which are incorporated into a sparse voxel hashed Signed Distance Field (SDF) on the GPU. On pose graph updates, the SDF volume is corrected on-the-fly using a novel keyframe re-integration strategy with reduced GPU-host streaming. We demonstrate in an extensive quantitative evaluation that our method is up to 93% more runtime efficient compared to the state-of-the-art and requires significantly less memory, with only negligible loss of surface quality. Overall, our system requires only a single GPU and allows for real-time surface correction of large environments.

Original languageEnglish
Title of host publicationBritish Machine Vision Conference 2017, BMVC 2017
PublisherBMVA Press
ISBN (Electronic)190172560X, 9781901725605
DOIs
StatePublished - 2017
Event28th British Machine Vision Conference, BMVC 2017 - London, United Kingdom
Duration: 4 Sep 20177 Sep 2017

Publication series

NameBritish Machine Vision Conference 2017, BMVC 2017

Conference

Conference28th British Machine Vision Conference, BMVC 2017
Country/TerritoryUnited Kingdom
CityLondon
Period4/09/177/09/17

Fingerprint

Dive into the research topics of 'Efficient online surface correction for real-time large-scale 3D reconstruction'. Together they form a unique fingerprint.

Cite this