Efficient model-based reconstruction framework for acoustic-resolution optoacoustic microscopy

Weiye Li, Urs A.T. Hofmann, Johannes Rebling, Quanyu Zhou, Zhenyue Chen, Ali Ozbek, Yuxiang Gong, Daniel Razansky, Xose Luis Dean Ben

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Acoustic-resolution optoacoustic microscopy (AR-OAM) visualizes internal tissue structures at millimeter to centimeter scale depths with high spatial resolution. The imaging performance mainly depends on the geometry and detection characteristics of the ultrasound transducer. Reconstruction methods incorporating transducer effects are essential to optimize achievable resolution, contrast and overall image quality. Model-based (MB) reconstruction has been shown to provide excellent imaging performance in several optoacoustic embodiments, due to its capacity to accurately model the transducer. However, the applicability of MB reconstruction methods in AR-OAM has been hampered by the high computational cost. Here, we propose an efficient MB reconstruction framework for largescale AR-OAM by considering scanning symmetries, which enabled capitalizing the computational power of a graphics processing unit. The suggested MB reconstruction method is shown to significantly improve the imaging performance of AR-OAM compared to synthetic aperture focusing technique, as validated in in vivo mouse skin experiment.

Original languageEnglish
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2021
EditorsAlexander A. Oraevsky, Lihong V. Wang
PublisherSPIE
ISBN (Electronic)9781510641198
DOIs
StatePublished - 2021
Externally publishedYes
EventPhotons Plus Ultrasound: Imaging and Sensing 2021 - Virtual, Online, United States
Duration: 6 Mar 202111 Mar 2021

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11642
ISSN (Print)1605-7422

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2021
Country/TerritoryUnited States
CityVirtual, Online
Period6/03/2111/03/21

Fingerprint

Dive into the research topics of 'Efficient model-based reconstruction framework for acoustic-resolution optoacoustic microscopy'. Together they form a unique fingerprint.

Cite this