Efficient Evaluation of Arbitrarily-Framed Holistic SQL Aggregates and Window Functions

Adrian Vogelsgesang, Thomas Neumann, Viktor Leis, Alfons Kemper

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Window functions became part of the SQL standard in SQL:2003 and are widely used for data analytics: Percentiles, rankings, moving averages, running sums and local maxima are all expressed as window functions in SQL. Yet, the features offered by SQL's window functions lack composability: Framing is only available for distributive and algebraic aggregate functions, but not for holistic aggregates like percentiles and window functions like ranks. The SQL standard explicitly disallows holistic aggregates from being framed and thereby severely limits data analysts. This paper proposes to remove this restriction, thereby making window functions fully composable. The newly gained composability allows for more complex aggregates which are tricky to evaluate. The lack of subquadratic, parallel algorithms to evaluate framed holistic aggregates is probably the main objection against adding truly composable window functionality to the SQL standard. As such, this paper shows how to efficiently evaluate all window and aggregate functions from SQL:2011, except for DENSE_RANK, in combination with arbitrary window frames. This includes framed distinct aggregates, framed value functions, framed percentiles and framed ranks.

Original languageEnglish
Title of host publicationSIGMOD 2022 - Proceedings of the 2022 International Conference on Management of Data
PublisherAssociation for Computing Machinery
Pages1243-1256
Number of pages14
ISBN (Electronic)9781450392495
DOIs
StatePublished - 10 Jun 2022
Event2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022 - Virtual, Online, United States
Duration: 12 Jun 202217 Jun 2022

Publication series

NameProceedings of the ACM SIGMOD International Conference on Management of Data
ISSN (Print)0730-8078

Conference

Conference2022 ACM SIGMOD International Conference on the Management of Data, SIGMOD 2022
Country/TerritoryUnited States
CityVirtual, Online
Period12/06/2217/06/22

Keywords

  • database systems
  • holistic aggregates
  • window functions

Fingerprint

Dive into the research topics of 'Efficient Evaluation of Arbitrarily-Framed Holistic SQL Aggregates and Window Functions'. Together they form a unique fingerprint.

Cite this