TY - JOUR
T1 - Effects of xenon on cerebral blood flow and cerebral glucose utilization in rats
AU - Frietsch, Thomas
AU - Bogdanski, Ralph
AU - Blobner, Manfred
AU - Werner, Christian
AU - Kuschinsky, Wolfgang
AU - Waschke, Klaus F.
PY - 2001
Y1 - 2001
N2 - Background: The effects of xenon inhalation on mean and local cerebral blood flow (CBF) and mean and local cerebral glucose utilization (CGU) were investigated using iodo-[14C]antipyrine and [14C]deoxyglucose autoradiography. Methods: Rats were randomly assigned to the following groups: conscious controls (n = 12); 30% (n = 12) or 70% xenon (n = 12) for 45 min for the measurement of local CBF and CGU; or 70% xenon for 2 min (n = 6) or 5 min (n = 6) for the measurement of local CBF only. Results: Compared with conscious controls, steady state inhalation of 30 or 70% xenon did not result in changes of either local or mean CBF. However, mean CBF increased by 48 and 37% after 2 and 5 min of 70% xenon short inhalation, which was entirely caused by an increased local CBF in cortical brain regions. Mean CGU determined during steady state 30 or 70% xenon inhalation remained unchanged, although local CGU decreased in 7 (30% xenon) and 18 (70% xenon) of the 40 examined brain regions. The correlation between CBF and CGU in 40 local brain structures was maintained during steady state inhalation of both 30 and 70% xenon inhalation, although at an increased slope at 70% xenon. Conclusion: Effects of 70% xenon inhalation on CBF in rats are time-dependent. During steady state xenon inhalation (45 min), mean values of CBF and CGU do not differ from control values, and the relation of regional CBF to CGU is maintained, although reset at a higher level.
AB - Background: The effects of xenon inhalation on mean and local cerebral blood flow (CBF) and mean and local cerebral glucose utilization (CGU) were investigated using iodo-[14C]antipyrine and [14C]deoxyglucose autoradiography. Methods: Rats were randomly assigned to the following groups: conscious controls (n = 12); 30% (n = 12) or 70% xenon (n = 12) for 45 min for the measurement of local CBF and CGU; or 70% xenon for 2 min (n = 6) or 5 min (n = 6) for the measurement of local CBF only. Results: Compared with conscious controls, steady state inhalation of 30 or 70% xenon did not result in changes of either local or mean CBF. However, mean CBF increased by 48 and 37% after 2 and 5 min of 70% xenon short inhalation, which was entirely caused by an increased local CBF in cortical brain regions. Mean CGU determined during steady state 30 or 70% xenon inhalation remained unchanged, although local CGU decreased in 7 (30% xenon) and 18 (70% xenon) of the 40 examined brain regions. The correlation between CBF and CGU in 40 local brain structures was maintained during steady state inhalation of both 30 and 70% xenon inhalation, although at an increased slope at 70% xenon. Conclusion: Effects of 70% xenon inhalation on CBF in rats are time-dependent. During steady state xenon inhalation (45 min), mean values of CBF and CGU do not differ from control values, and the relation of regional CBF to CGU is maintained, although reset at a higher level.
UR - http://www.scopus.com/inward/record.url?scp=0035144756&partnerID=8YFLogxK
U2 - 10.1097/00000542-200102000-00019
DO - 10.1097/00000542-200102000-00019
M3 - Article
C2 - 11176094
AN - SCOPUS:0035144756
SN - 0003-3022
VL - 94
SP - 290
EP - 297
JO - Anesthesiology
JF - Anesthesiology
IS - 2
ER -