Effects of changes in climatic means, variability, and agro-technologies on future wheat and maize yields at 10 sites across the globe

Gennady Bracho-Mujica, Reimund P. Rötter, Markus Haakana, Taru Palosuo, Stefan Fronzek, Senthold Asseng, Chen Yi, Frank Ewert, Thomas Gaiser, Belay Kassie, Kirsten Paff, Ehsan Eyshi Rezaei, Alfredo Rodríguez, Margarita Ruiz-Ramos, Amit K. Srivastava, Pierre Stratonovitch, Fulu Tao, Mikhail A. Semenov

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

To address the rising global food demand in a changing climate, yield gaps (YG), the difference between potential yields under irrigated (YP) or rainfed conditions (YWL) and actual farmers’ yields (Ya), must be significantly narrowed whilst raising potential yields. Here, we examined the likely impacts of climate change (including changes in climatic variability) and improvements in agricultural technologies on crop yields and yield gaps. Eight rigorously tested crop simulation models were calibrated for wheat and maize and run at 10 different sites around the world. Simulations were performed to estimate YP, YWL and yields achievable under three locally defined technology packages: TP0 represents average farmer's practice, while TP1 and TP2 are increasingly advanced technologies. Simulations were run for the baseline (1981–2010) and twelve future climate scenarios for 2050, representing changes in the means of climate variables and in the variability of daily temperature and dry/wet spell durations. Our basic hypotheses were that (H1) mean climate changes combined with increased weather variability lead to more negative yield impacts than mean climate changes alone, and (H2) advanced technologies would serve as effective adaptations under future climatic conditions. We found that crop responses were dependent on site characteristics, climate scenarios and adopted technologies. Our findings did not support H1. As for H2, the improved technology packages increased wheat and maize yields at all sites, but yield gap reduction varied substantially among sites. Future studies should consider a broader range of climate scenarios and methods for analysing potential shifts in climate variability. Moreover, it is recommended to co-create and evaluate climate zone-specific climate-smart crop production technologies in interaction with a wide range of local stakeholders.

Original languageEnglish
Article number109887
JournalAgricultural and Forest Meteorology
Volume346
DOIs
StatePublished - 1 Mar 2024

Keywords

  • Adaptation
  • Climate change impacts
  • Crop modelling
  • Food security
  • Technology change
  • Yield gap

Fingerprint

Dive into the research topics of 'Effects of changes in climatic means, variability, and agro-technologies on future wheat and maize yields at 10 sites across the globe'. Together they form a unique fingerprint.

Cite this