Effective Version Space Reduction for Convolutional Neural Networks

Jiayu Liu, Ioannis Chiotellis, Rudolph Triebel, Daniel Cremers

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In active learning, sampling bias could pose a serious inconsistency problem and hinder the algorithm from finding the optimal hypothesis. However, many methods for neural networks are hypothesis space agnostic and do not address this problem. We examine active learning with convolutional neural networks through the principled lens of version space reduction. We identify the connection between two approaches – prior mass reduction and diameter reduction – and propose a new diameter-based querying method – the minimum Gibbs-vote disagreement. By estimating version space diameter and bias, we illustrate how version space of neural networks evolves and examine the realizability assumption. With experiments on MNIST, Fashion-MNIST, SVHN and STL-10 datasets, we demonstrate that diameter reduction methods reduce the version space more effectively and perform better than prior mass reduction and other baselines, and that the Gibbs vote disagreement is on par with the best query method.

Original languageEnglish
Title of host publicationMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2020, Proceedings
EditorsFrank Hutter, Kristian Kersting, Jefrey Lijffijt, Isabel Valera
PublisherSpringer Science and Business Media Deutschland GmbH
Pages85-100
Number of pages16
ISBN (Print)9783030676605
DOIs
StatePublished - 2021
EventEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020 - Virtual, Online
Duration: 14 Sep 202018 Sep 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12458 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceEuropean Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020
CityVirtual, Online
Period14/09/2018/09/20

Keywords

  • Active learning
  • Deep learning
  • Diameter reduction
  • Version space

Fingerprint

Dive into the research topics of 'Effective Version Space Reduction for Convolutional Neural Networks'. Together they form a unique fingerprint.

Cite this