Effective Electron-Vibration Coupling by Ab Initio Methods

Maximilian F.X. Dorfner, Frank Ortmann

Research output: Contribution to journalArticlepeer-review

Abstract

The description of electron-phonon coupling in materials is complex, with varying definitions of coupling constants in the literature and different theoretical approaches available. This article analyzes different levels of theory to introduce and compute these coupling constants. Within the quasi-particle picture, we derive an effective linear-coupling Hamiltonian, describing the interaction of electronic quasi-particles with vibrations. This description allows a comparison between coupling constants computed using density functional theory and higher-level quasi-particle approaches by identifying the Kohn-Sham potential as an approximation to the frequency-independent part of the self-energy. We also investigate their dependence on the exchange-correlation (XC) functional. Despite significant deviations of the Kohn-Sham eigenvalues, which arise from different XC functionals, the resulting coupling constants are remarkably similar. A comparison to quasi-particle methods, such as the well-established G0W0 approach, reveals significant quasi-particle weight renormalization. Surprisingly, however, in nearly all the considered cases, the coupling constants computed in the DFT framework are excellent approximates of the ones in the quasi-particle framework, which is traced back to a significant cancellation of competing terms. Other quasi-particle methods, such as the Outer Valence Green’s Function approach and the ΔSCF method, are also included in the comparison. Moreover, we investigate the coupling of vibrations to excitonic excitations and find, by comparison to time-dependent density functional theory and extended multiconfiguration quasi-degenerate second-order perturbation theory, that knowing the underlying electron- and hole-vibration couplings is sufficient to accurately determine the exciton-vibration coupling constants in the studied cases.

Original languageEnglish
JournalJournal of Chemical Theory and Computation
DOIs
StateAccepted/In press - 2025

Fingerprint

Dive into the research topics of 'Effective Electron-Vibration Coupling by Ab Initio Methods'. Together they form a unique fingerprint.

Cite this