TY - JOUR
T1 - Effect of N-glycosylation on the transport activity of the peptide transporter PEPT1
AU - Stelzl, Tamara
AU - Baranov, Tatjana
AU - Geillinger, Kerstin E.
AU - Kottra, Gabor
AU - Daniel, Hannelore
N1 - Publisher Copyright:
© 2016 the American Physiological Society.
PY - 2016
Y1 - 2016
N2 - The intestinal peptide transporter PEPT1 provides bulk quantities of amino acids to epithelial cells. PEPT1 is a high-capacity and lowaffinity solute carrier of the SLC15 family found in apical membranes of enterocytes in small intestine and distal colon. Surprisingly, murine PEPT1 (mPEPT1) has an apparent molecular mass of ~95 kDa in the small intestine but ~105 kDa in the large intestine. Here we describe studies on mPEPT1 protein glycosylation and how glycans affect transport function. Putative N-glycosylation sites of mPEPT1 were altered by site-directed mutagenesis followed by expression in Xenopus laevis oocytes. Replacement of six asparagine residues (N) at positions N50, N406, N439, N510, N515, and N532 by glutamine (Q) resulted in a decrease of the mPEPT1 mass by around 35 kDa. Electrophysiology revealed all glycosylation-deficient transporters to be functional with comparable expression levels in oocyte membranes. Strikingly, the mutant protein with N50Q exhibited a twofold decreased affinity for Gly-Sar but a 2.5-fold rise in the maximal inward currents compared with the wild-type protein. Elevated maximal transport currents were also recorded for cefadroxil and tri-Lalanine. Tracer flux studies performed with [14C]-Gly-Sar confirmed the reduction in substrate affinity and showed twofold increased maximal transport rates for the N50Q transporter. Elimination of individual N-glycosylation sites did not alter membrane expression in oocytes or overall transport characteristics except for the mutant protein N50Q. Because transporter surface density was not altered in N50Q, removal of the glycan at this location appears to accelerate the substrate turnover rate.
AB - The intestinal peptide transporter PEPT1 provides bulk quantities of amino acids to epithelial cells. PEPT1 is a high-capacity and lowaffinity solute carrier of the SLC15 family found in apical membranes of enterocytes in small intestine and distal colon. Surprisingly, murine PEPT1 (mPEPT1) has an apparent molecular mass of ~95 kDa in the small intestine but ~105 kDa in the large intestine. Here we describe studies on mPEPT1 protein glycosylation and how glycans affect transport function. Putative N-glycosylation sites of mPEPT1 were altered by site-directed mutagenesis followed by expression in Xenopus laevis oocytes. Replacement of six asparagine residues (N) at positions N50, N406, N439, N510, N515, and N532 by glutamine (Q) resulted in a decrease of the mPEPT1 mass by around 35 kDa. Electrophysiology revealed all glycosylation-deficient transporters to be functional with comparable expression levels in oocyte membranes. Strikingly, the mutant protein with N50Q exhibited a twofold decreased affinity for Gly-Sar but a 2.5-fold rise in the maximal inward currents compared with the wild-type protein. Elevated maximal transport currents were also recorded for cefadroxil and tri-Lalanine. Tracer flux studies performed with [14C]-Gly-Sar confirmed the reduction in substrate affinity and showed twofold increased maximal transport rates for the N50Q transporter. Elimination of individual N-glycosylation sites did not alter membrane expression in oocytes or overall transport characteristics except for the mutant protein N50Q. Because transporter surface density was not altered in N50Q, removal of the glycan at this location appears to accelerate the substrate turnover rate.
KW - Glycoprotein
KW - N-linked glycosylation
KW - Peptide transport
KW - Western blot
KW - Xenopus
UR - http://www.scopus.com/inward/record.url?scp=84956945046&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00350.2015
DO - 10.1152/ajpgi.00350.2015
M3 - Article
C2 - 26585416
AN - SCOPUS:84956945046
SN - 0193-1857
VL - 310
SP - G128-G141
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 2
ER -