TY - JOUR
T1 - Effect of molar mass and size of non-alcoholic beer fractions and their relevance toward palate fullness intensity
AU - Moreno Ravelo, Rolando César
AU - Masch, Jens Dieter
AU - Gastl, Martina
AU - Becker, Thomas
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/8
Y1 - 2023/8
N2 - Palate fullness intensity and mouthfeel descriptors are essential sensory characteristics of non-alcoholic beers (NABs). The descriptor's perception might be influenced by the molar distribution of the non-volatile matrix in cereal-based beverages like NABs. However, only limited information is available on the molar mass of different substances in NABs. This study investigated the role of weight average molar mass (Mw) and size of NABs fractions and their relation to sensory perception. Industrialized bottom-fermented NABs (n = 28) from the German market and NABs produced by different methods were used in this study. A trained sensory panel evaluated palate fullness intensity, mouthfeel, and basic taste descriptors (as additional quality parameters). Asymmetric flow field-flow fractionation was used to fractionate NABs, while Mw was determined by multi-angle light scattering and differential refractive index detectors. The NABs were fractionated into three groups containing different substances: proteins, proteins-polyphenol complexes (P-PC) and low molar mass (non-)starch polysaccharides (LN-SP), and high molar mass (non-)starch polysaccharides (HN-SP). The Mw range of proteins was 18.3–41 kDa, P-PC and LN-SP 43–122.6 kDa, and HN-SP 0.40–2.18·103 kDa. Harmony, defined as the sweet and sour ratio, influenced the palate fullness intensity perception. In the harmonic samples (sour/sweet sensory balanced), the size of HN-SP (> 25 nm) showed a positive correlation to palate fullness intensity. The results suggest the importance of dextrins, arabinoxylan, and β-glucan in modulating the sensory characteristics of harmonic bottom-fermented NABs.
AB - Palate fullness intensity and mouthfeel descriptors are essential sensory characteristics of non-alcoholic beers (NABs). The descriptor's perception might be influenced by the molar distribution of the non-volatile matrix in cereal-based beverages like NABs. However, only limited information is available on the molar mass of different substances in NABs. This study investigated the role of weight average molar mass (Mw) and size of NABs fractions and their relation to sensory perception. Industrialized bottom-fermented NABs (n = 28) from the German market and NABs produced by different methods were used in this study. A trained sensory panel evaluated palate fullness intensity, mouthfeel, and basic taste descriptors (as additional quality parameters). Asymmetric flow field-flow fractionation was used to fractionate NABs, while Mw was determined by multi-angle light scattering and differential refractive index detectors. The NABs were fractionated into three groups containing different substances: proteins, proteins-polyphenol complexes (P-PC) and low molar mass (non-)starch polysaccharides (LN-SP), and high molar mass (non-)starch polysaccharides (HN-SP). The Mw range of proteins was 18.3–41 kDa, P-PC and LN-SP 43–122.6 kDa, and HN-SP 0.40–2.18·103 kDa. Harmony, defined as the sweet and sour ratio, influenced the palate fullness intensity perception. In the harmonic samples (sour/sweet sensory balanced), the size of HN-SP (> 25 nm) showed a positive correlation to palate fullness intensity. The results suggest the importance of dextrins, arabinoxylan, and β-glucan in modulating the sensory characteristics of harmonic bottom-fermented NABs.
KW - Asymmetric flow field-flow fractionation
KW - Molar mass
KW - Mouthfeel
KW - Non-alcoholic beer
KW - Palate fullness
UR - http://www.scopus.com/inward/record.url?scp=85160206100&partnerID=8YFLogxK
U2 - 10.1016/j.foodres.2023.112725
DO - 10.1016/j.foodres.2023.112725
M3 - Article
AN - SCOPUS:85160206100
SN - 0963-9969
VL - 170
JO - Food Research International
JF - Food Research International
M1 - 112725
ER -