Effect of ambient storage on the degradation of ni-rich positive electrode materials (NMC811) for li-ion batteries

Roland Jung, Robert Morasch, Pinar Karayaylali, Katherine Phillips, Filippo Maglia, Christoph Stinner, Yang Shao-Horn, Hubert A. Gasteiger

Research output: Contribution to journalArticlepeer-review

332 Scopus citations

Abstract

Layered LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the high-energy positive electrode (cathode) materials for next generation Li-ion batteries. However, compared to the structurally similar LiNi1/3Mn1/3Co1/3O2 (NMC111), it can suffer from a shorter lifetime due to its higher surface reactivity. This work studied and compared the formation of surface contaminations on NMC811 and NMC111 when stored under ambient conditions using electrochemical cycling, Raman spectroscopy, and X-ray photoelectron spectroscopy. NMC811 was found to develop a surface layer of up to ∼10 nm thickness that was mostly composed of nickel carbonate species mixed with minor quantities of hydroxide and water after ambient storage for 1 year, while no significant changes were observed on the NMC111 surface. The amount of carbonate species was quantified by gas chromatographic (GC) detection of carbon dioxide generated when the NMC particles were dispersed in hydrochloric acid. Surface impurity species formed on NMC811 upon ambient storage not only lead to a significant delithiation voltage peak in the first charge, but also markedly reduce the cycling stability of NMC811-graphite cells due to significantly growing polarization of the NMC811 electrode.

Original languageEnglish
Pages (from-to)A132-A141
JournalJournal of the Electrochemical Society
Volume165
Issue number2
DOIs
StatePublished - 2018

Fingerprint

Dive into the research topics of 'Effect of ambient storage on the degradation of ni-rich positive electrode materials (NMC811) for li-ion batteries'. Together they form a unique fingerprint.

Cite this