TY - JOUR
T1 - EENet
T2 - An effective and efficient network for single image dehazing
AU - Cui, Yuning
AU - Wang, Qiang
AU - Li, Chaopeng
AU - Ren, Wenqi
AU - Knoll, Alois
N1 - Publisher Copyright:
© 2024
PY - 2025/2
Y1 - 2025/2
N2 - While numerous solutions leveraging convolutional neural networks and Transformers have been proposed for image dehazing, there remains significant potential to improve the balance between efficiency and reconstruction performance. In this paper, we introduce an efficient and effective network named EENet, designed for image dehazing through enhanced spatial–spectral learning. EENet comprises three primary modules: the frequency processing module, the spatial processing module, and the dual-domain interaction module. Specifically, the frequency processing module handles Fourier components individually based on their distinct properties for image dehazing while also modeling global dependencies according to the convolution theorem. Additionally, the spatial processing module is designed to enable multi-scale learning. Finally, the dual-domain interaction module promotes information exchange between the frequency and spatial domains. Extensive experiments demonstrate that EENet achieves state-of-the-art performance on seven synthetic and real-world datasets for image dehazing. Moreover, the network's generalization ability is validated by extending it to image desnowing, image defocus deblurring, and low-light image enhancement.
AB - While numerous solutions leveraging convolutional neural networks and Transformers have been proposed for image dehazing, there remains significant potential to improve the balance between efficiency and reconstruction performance. In this paper, we introduce an efficient and effective network named EENet, designed for image dehazing through enhanced spatial–spectral learning. EENet comprises three primary modules: the frequency processing module, the spatial processing module, and the dual-domain interaction module. Specifically, the frequency processing module handles Fourier components individually based on their distinct properties for image dehazing while also modeling global dependencies according to the convolution theorem. Additionally, the spatial processing module is designed to enable multi-scale learning. Finally, the dual-domain interaction module promotes information exchange between the frequency and spatial domains. Extensive experiments demonstrate that EENet achieves state-of-the-art performance on seven synthetic and real-world datasets for image dehazing. Moreover, the network's generalization ability is validated by extending it to image desnowing, image defocus deblurring, and low-light image enhancement.
KW - Efficient network
KW - Frequency separation
KW - Image dehazing
KW - Multi-scale representation learning
UR - http://www.scopus.com/inward/record.url?scp=85206346195&partnerID=8YFLogxK
U2 - 10.1016/j.patcog.2024.111074
DO - 10.1016/j.patcog.2024.111074
M3 - Article
AN - SCOPUS:85206346195
SN - 0031-3203
VL - 158
JO - Pattern Recognition
JF - Pattern Recognition
M1 - 111074
ER -