TY - JOUR
T1 - Ecological indicators for stream restoration success
AU - Pander, Joachim
AU - Geist, Juergen
PY - 2013
Y1 - 2013
N2 - Exploitation of freshwater resources is essential for sustenance of human existence and alteration of rivers, lakes and wetlands has facilitated economic development for centuries. Consequently, freshwater biodiversity is critically threatened, with stream ecosystems being the most heavily affected. To improve the status of freshwater habitats, e.g. in the context of the European Water Framework Directive and the US Clean Water Act, it is essential to implement the most effective restoration measures and identify the most suitable indicators for restoration success. Herein, several active and passive bioindication approaches are reviewed in light of existing legal frameworks, current targets and applicable implementation of river restoration. Such approaches should move from the use of single biological indicators to more holistic ecological indicators simultaneously addressing communities, multiple life stages and habitat properties such as water quality, substrate composition and stream channel morphology. The proposed Proceeding Chain of Restoration (PCoR) can enable the integration of natural scientific, political and socioeconomic dimensions for restoration of aquatic ecosystems and associated services. Generally, an analysis that combines target species-based active bioindication with community-based passive bioindication and multivariate statistics seems to be most suitable for a holistic evaluation of restoration success, as well as for the monitoring of stream ecosystem health. Since the response of biological communities to changing environmental conditions can differ between taxonomic groups and rivers, assessments at the ecosystem scale should include several levels of biological organisation. A stepwise evaluation of the primary factors inducing disturbance or degradation is needed to integrate increasing levels of complexity from water quality assessments to the evaluation of ecological function. The proposed PCoR can provide a step-by-step guide for restoration ecologists, comprising all planning steps from the determination of the conservation objectives to the use of ecological indicators in post-restoration monitoring.
AB - Exploitation of freshwater resources is essential for sustenance of human existence and alteration of rivers, lakes and wetlands has facilitated economic development for centuries. Consequently, freshwater biodiversity is critically threatened, with stream ecosystems being the most heavily affected. To improve the status of freshwater habitats, e.g. in the context of the European Water Framework Directive and the US Clean Water Act, it is essential to implement the most effective restoration measures and identify the most suitable indicators for restoration success. Herein, several active and passive bioindication approaches are reviewed in light of existing legal frameworks, current targets and applicable implementation of river restoration. Such approaches should move from the use of single biological indicators to more holistic ecological indicators simultaneously addressing communities, multiple life stages and habitat properties such as water quality, substrate composition and stream channel morphology. The proposed Proceeding Chain of Restoration (PCoR) can enable the integration of natural scientific, political and socioeconomic dimensions for restoration of aquatic ecosystems and associated services. Generally, an analysis that combines target species-based active bioindication with community-based passive bioindication and multivariate statistics seems to be most suitable for a holistic evaluation of restoration success, as well as for the monitoring of stream ecosystem health. Since the response of biological communities to changing environmental conditions can differ between taxonomic groups and rivers, assessments at the ecosystem scale should include several levels of biological organisation. A stepwise evaluation of the primary factors inducing disturbance or degradation is needed to integrate increasing levels of complexity from water quality assessments to the evaluation of ecological function. The proposed PCoR can provide a step-by-step guide for restoration ecologists, comprising all planning steps from the determination of the conservation objectives to the use of ecological indicators in post-restoration monitoring.
KW - Biodiversity
KW - Bioindication
KW - Ecological indicator
KW - River restoration
KW - Species conservation
KW - Stream ecosystem health
UR - http://www.scopus.com/inward/record.url?scp=84875186136&partnerID=8YFLogxK
U2 - 10.1016/j.ecolind.2013.01.039
DO - 10.1016/j.ecolind.2013.01.039
M3 - Review article
AN - SCOPUS:84875186136
SN - 1470-160X
VL - 30
SP - 106
EP - 118
JO - Ecological Indicators
JF - Ecological Indicators
ER -