Dynamic contrast-enhanced computed tomography imaging biomarkers correlated with immunohistochemistry for monitoring the effects of sorafenib on experimental prostate carcinomas

Clemens C. Cyran, Jobst C. Von Einem, Philipp M. Paprottka, Bettina Schwarz, Michael Ingrisch, Olaf Dietrich, Rabea Hinkel, Christiane J. Bruns, Dirk A. Clevert, Ralf Eschbach, Maximilian F. Reiser, Bernd J. Wintersperger, Konstantin Nikolaou

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

OBJECTIVES:: To investigate dynamic contrast-enhanced computed tomography (DCE-CT) for monitoring the effects of sorafenib on experimental prostate carcinomas in rats by quantitative assessments of tumor microcirculation parameters with immunohistochemical validation. MATERIAL AND METHODS:: Prostate carcinoma allografts (MLLB-2) implanted subcutaneously in male Copenhagen rats (n=16) were imaged at baseline and after a 1-week treatment course of sorafenib using DCE-CT with iopromide (Ultravist 370, Bayer Pharma, Berlin, Germany) on a dual-source 128-slice CT (Somatom Definition FLASH, Siemens Healthcare, Forchheim, Germany). Scan parameters were as follows: detector width, 38.4 mm; contrast agent volume, 2 mL/kg bodyweight; injection rate, 0.5 mL/s; scan duration, 90 seconds; and temporal resolution, 0.5 seconds. The treatment group (n=8) received daily applications of sorafenib (10 mg/kg bodyweight) via gavage. Quantitative parameters of tumor microcirculation (plasma flow, mL/100 mL/min), endothelial permeability-surface area product (PS, mL/100 mL/min), and tumor vascularity (plasma volume, %) were calculated using a 2-compartment uptake model. DCE-CT parameters were correlated with immunohistochemical assessments of tumor vascularity (RECA-1), cell proliferation (Ki-67), and apoptosis (TUNEL). RESULTS:: Sorafenib significantly (P < 0.05) suppressed tumor perfusion (25.1 ± 9.8 to 9.5 ± 6.0 mL/100 mL/min), tumor vascularity (15.6% ± 11.4% to 5.4% ± 2.1%), and PS (8.7 ± 4.5 to 2.7 ± 2.5 mL/100 mL/min) in prostate carcinomas during the treatment course. Immunohistochemistry revealed significantly lower tumor vascularity in the therapy group than in the control group (RECA-1; 181 ± 24 vs. 314 ± 47; P < 0.05). In sorafenib-treated tumors, significantly more apoptotic cells (TUNEL; 7132 ± 3141 vs. 3722 ± 1445; P < 0.05) and significantly less proliferating cells (Ki-67; 9628 ± 1.298 vs. 17,557 ± 1446; P < 0.05) were observed than those in the control group. DCE-CT tumor perfusion correlated significantly (P < 0.05) with tumor cell proliferation (Ki-67; r=0.55). DCE-CT tumor vascularity correlated significantly (P < 0.05) with immunohistochemical tumor cell apoptosis (TUNEL; r=-0.59) and tumor cell proliferation (Ki-67; r=0.68). DCE-CT endothelial PS correlated significantly (P < 0.05) with immunohistochemical tumor cell apoptosis (TUNEL; r=-0.6) and tumor vascularity (RECA-1; r=0.53). While performing corrections for multiple comparisons, we observed a significant correlation only between DCE-CT tumor vascularity (RECA-1) and tumor cell proliferation (Ki-67). CONCLUSION:: Sorafenib significantly suppressed tumor perfusion, tumor vascularity, and PS quantified by DCE-CT in experimental prostate carcinomas in rats. These functional CT surrogate markers showed moderate correlations with antiangiogenic, antiproliferative, and proapoptotic effects observed by immunohistochemistry. DCE-CT may be applicable for the quantification of noninvasive imaging biomarkers of therapy response to antiangiogenic therapy.

Original languageEnglish
Pages (from-to)49-57
Number of pages9
JournalInvestigative Radiology
Volume47
Issue number1
DOIs
StatePublished - Jan 2012
Externally publishedYes

Keywords

  • DCE-CT
  • Imaging biomarkers
  • Immunohistochemical validation
  • Prostate carcinoma allografts
  • Sorafenib

Fingerprint

Dive into the research topics of 'Dynamic contrast-enhanced computed tomography imaging biomarkers correlated with immunohistochemistry for monitoring the effects of sorafenib on experimental prostate carcinomas'. Together they form a unique fingerprint.

Cite this