Dual Adversarial Network for Unsupervised Ground/Satellite-to-Aerial Scene Adaptation

Jianzhe Lin, Lichao Mou, Tianze Yu, Xiaoxiang Zhu, Z. Jane Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

Recent domain adaptation work tends to obtain a uniformed representation in an adversarial manner through joint learning of the domain discriminator and feature generator. However, this domain adversarial approach could render sub-optimal performances due to two potential reasons: First, it might fail to consider the task at hand when matching the distributions between the domains. Second, it generally treats the source and target domain data in the same way. In our opinion, the source domain data which serves the feature adaption purpose should be supplementary, whereas the target domain data mainly needs to consider the task-specific classifier. Motivated by this, we propose a dual adversarial network for domain adaptation, where two adversarial learning processes are conducted iteratively, in correspondence with the feature adaptation and the classification task respectively. The efficacy of the proposed method is first demonstrated on Visual Domain Adaptation Challenge (VisDA) 2017 challenge, and then on two newly proposed Ground/Satellite-to-Aerial Scene adaptation tasks. For the proposed tasks, the data for the same scene is collected not only by the traditional camera on the ground, but also by satellite from the out space and unmanned aerial vehicle (UAV) at the high-altitude. Since the semantic gap between the ground/satellite scene and the aerial scene is much larger than that between ground scenes, the newly proposed tasks are more challenging than traditional domain adaptation tasks. The datasets/codes can be found at https://github.com/jianzhelin/DuAN.

Original languageEnglish
Title of host publicationMM 2020 - Proceedings of the 28th ACM International Conference on Multimedia
PublisherAssociation for Computing Machinery, Inc
Pages10-18
Number of pages9
ISBN (Electronic)9781450379885
DOIs
StatePublished - 12 Oct 2020
Event28th ACM International Conference on Multimedia, MM 2020 - Virtual, Online, United States
Duration: 12 Oct 202016 Oct 2020

Publication series

NameMM 2020 - Proceedings of the 28th ACM International Conference on Multimedia

Conference

Conference28th ACM International Conference on Multimedia, MM 2020
Country/TerritoryUnited States
CityVirtual, Online
Period12/10/2016/10/20

Keywords

  • domain adaptation
  • ground/satellite-to-aerial scene
  • task-specific

Fingerprint

Dive into the research topics of 'Dual Adversarial Network for Unsupervised Ground/Satellite-to-Aerial Scene Adaptation'. Together they form a unique fingerprint.

Cite this