Abstract
We present an ideal realization of the Tavis-Cummings model in the absence of atom number and coupling fluctuations by embedding a discrete number of fully controllable superconducting qubits at fixed positions into a transmission line resonator. Measuring the vacuum Rabi mode splitting with one, two, and three qubits strongly coupled to the cavity field, we explore both bright and dark dressed collective multiqubit states and observe the discrete N scaling of the collective dipole coupling strength. Our experiments demonstrate a novel approach to explore collective states, such as the W state, in a fully globally and locally controllable quantum system. Our scalable approach is interesting for solid-state quantum information processing and for fundamental multiatom quantum optics experiments with fixed atom numbers.
Original language | English |
---|---|
Article number | 083601 |
Journal | Physical Review Letters |
Volume | 103 |
Issue number | 8 |
DOIs | |
State | Published - 17 Aug 2009 |
Externally published | Yes |