Draping simulation with a new finite element formulation involving an internal unit cell

B. Kaiser, T. Pyttel, E. Haug, F. Duddeck

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Today finite element simulations for draping are based on anisotropic continuum mechanical models. Effects like fiber separation, fiber sliding and Poisson's ratio greater than 0.5 are not describable with such an approach. The work presents a new finite element formulation for plain woven fabric involving an internal unit cell. The unit cell is a finite element model based on beams. This beam model represents the kinematics and the interactions of the rovings of the real fabric. This approach offers possibilities to overcome the limitations of models based on a continuum. The new finite element formulation is implemented in the user environment of the industrial explicit FE software PAM-COMPOSITES from the ESI group.

Original languageEnglish
Title of host publicationProceedings of the 20th International ESAFORM Conference on Material Forming, ESAFORM 2017
EditorsDermot Brabazon, Inam Ul Ahad, Sumsun Naher
PublisherAmerican Institute of Physics Inc.
ISBN (Electronic)9780735415805
DOIs
StatePublished - 16 Oct 2017
Event20th International ESAFORM Conference on Material Forming, ESAFORM 2017 - Dublin, Ireland
Duration: 26 Apr 201728 Apr 2017

Publication series

NameAIP Conference Proceedings
Volume1896
ISSN (Print)0094-243X
ISSN (Electronic)1551-7616

Conference

Conference20th International ESAFORM Conference on Material Forming, ESAFORM 2017
Country/TerritoryIreland
CityDublin
Period26/04/1728/04/17

Fingerprint

Dive into the research topics of 'Draping simulation with a new finite element formulation involving an internal unit cell'. Together they form a unique fingerprint.

Cite this