DOT: Dynamic Object Tracking for Visual SLAM

Irene Ballester, Alejandro Fontán, Javier Civera, Klaus H. Strobl, Rudolph Triebel

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

66 Scopus citations

Abstract

In this paper we present DOT (Dynamic Object Tracking), a front-end that added to existing SLAM systems can significantly improve their robustness and accuracy in highly dynamic environments. DOT combines instance segmentation and multi-view geometry to generate masks for dynamic objects in order to allow SLAM systems based on rigid scene models to avoid such image areas in their optimizations. To determine which objects are actually moving, DOT segments first instances of potentially dynamic objects and then, with the estimated camera motion, tracks such objects by minimizing the photometric reprojection error. This short-term tracking improves the accuracy of the segmentation with respect to other approaches. In the end, only actually dynamic masks are generated. We have evaluated DOT with ORB-SLAM 2 [1] in three public datasets. Our results show that our approach improves significantly the accuracy and robustness of ORB-SLAM 2, especially in highly dynamic scenes.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages11705-11711
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May
ISSN (Print)1050-4729

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

Fingerprint

Dive into the research topics of 'DOT: Dynamic Object Tracking for Visual SLAM'. Together they form a unique fingerprint.

Cite this