Abstract
We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the Fermi level. On the other hand, the PI regime at large λ and small U persists out to relatively high doping levels. We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with lowering temperature in a regime of intermediate values of U and λ.
Original language | English |
---|---|
Article number | 205141 |
Journal | Physical Review B |
Volume | 96 |
Issue number | 20 |
DOIs | |
State | Published - 22 Nov 2017 |
Externally published | Yes |