Domain and Geometry Agnostic CNNs for Left Atrium Segmentation in 3D Ultrasound

Markus A. Degel, Nassir Navab, Shadi Albarqouni

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

38 Scopus citations

Abstract

Segmentation of the left atrium and deriving its size can help to predict and detect various cardiovascular conditions. Automation of this process in 3D Ultrasound image data is desirable, since manual delineations are time-consuming, challenging and observer-dependent. Convolutional neural networks have made improvements in computer vision and in medical image analysis. They have successfully been applied to segmentation tasks and were extended to work on volumetric data. In this paper we introduce a combined deep-learning based approach on volumetric segmentation in Ultrasound acquisitions with incorporation of prior knowledge about left atrial shape and imaging device. The results show, that including a shape prior helps the domain adaptation and the accuracy of segmentation is further increased with adversarial learning.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2018 - 21st International Conference, 2018, Proceedings
EditorsAlejandro F. Frangi, Gabor Fichtinger, Julia A. Schnabel, Carlos Alberola-López, Christos Davatzikos
PublisherSpringer Verlag
Pages630-637
Number of pages8
ISBN (Print)9783030009366
DOIs
StatePublished - 2018
Event21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 16 Sep 201820 Sep 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11073 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference21st International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2018
Country/TerritorySpain
CityGranada
Period16/09/1820/09/18

Fingerprint

Dive into the research topics of 'Domain and Geometry Agnostic CNNs for Left Atrium Segmentation in 3D Ultrasound'. Together they form a unique fingerprint.

Cite this