Divergence Scaling for Distribution Matching

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Distribution matchers for finite alphabets are shown to have informational divergences that grow logarithmically with the block length, generalizing a basic result for binary strings.

Original languageEnglish
Title of host publication2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1159-1163
Number of pages5
ISBN (Electronic)9781538682098
DOIs
StatePublished - 12 Jul 2021
Event2021 IEEE International Symposium on Information Theory, ISIT 2021 - Virtual, Melbourne, Australia
Duration: 12 Jul 202120 Jul 2021

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2021-July
ISSN (Print)2157-8095

Conference

Conference2021 IEEE International Symposium on Information Theory, ISIT 2021
Country/TerritoryAustralia
CityVirtual, Melbourne
Period12/07/2120/07/21

Fingerprint

Dive into the research topics of 'Divergence Scaling for Distribution Matching'. Together they form a unique fingerprint.

Cite this