Abstract
Robustness to distributional shift is one of the key challenges of contemporary machine learning. Attaining such robustness is the goal of distributionally robust optimization, which seeks a solution to an optimization problem that is worst-case robust under a specified distributional shift of an uncontrolled covariate. In this paper, we study such a problem when the distributional shift is measured via the maximum mean discrepancy (MMD). For the setting of zeroth-order, noisy optimization, we present a novel distributionally robust Bayesian optimization algorithm (DRBO). Our algorithm provably obtains sub-linear robust regret in various settings that differ in how the uncertain covariate is observed. We demonstrate the robust performance of our method on both synthetic and real-world benchmarks.
Original language | English |
---|---|
Pages (from-to) | 2174-2184 |
Number of pages | 11 |
Journal | Proceedings of Machine Learning Research |
Volume | 108 |
State | Published - 2020 |
Externally published | Yes |
Event | 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020 - Virtual, Online Duration: 26 Aug 2020 → 28 Aug 2020 |