Distributed Compression of Correlated Classical-Quantum Sources

Zahra Baghali Khanian, Andreas Winter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

We resume the investigation of the problem of independent local compression of correlated quantum sources, the classical case of which is covered by the celebrated Slepian-Wolf theorem. We focus specifically on classical-quantum (cq) sources, for which one edge of the rate region, corresponding to the compression of the classical part, using the quantum part as side information at the decoder, was previously determined by Devetak and Winter [Phys. Rev. A 68, 042301 (2003)]. Whereas the Devetak-Winter protocol attains a rate-sum equal to the von Neumann entropy of the joint source, here we show that the full rate region is much more complex, due to the partially quantum nature of the source. In particular, in the opposite case of compressing the quantum part of the source, using the classical part as side information at the decoder, typically the rate sum is strictly larger than the von Neumann entropy of the total source.We determine the full rate region in the generic case, showing that, apart from the Devetak-Winter point, all other points in the achievable region have a rate sum strictly larger than the joint entropy. We can interpret the difference as the price paid for the quantum encoder being ignorant of the classical side information. In the general case, we give an achievable rate region, via protocols that are built on the decoupling principle, and the principles of quantum state merging and quantum state redistribution. Our achievable region is matched almost by a single-letter converse, which however still involves asymptotic errors and an unbounded auxiliary system.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1152-1156
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - Jul 2019
Externally publishedYes
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July
ISSN (Print)2157-8095

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/07/1912/07/19

Fingerprint

Dive into the research topics of 'Distributed Compression of Correlated Classical-Quantum Sources'. Together they form a unique fingerprint.

Cite this