Direct observation of phase transformations in the simulated heat-affected zone of a 9Cr martensitic steel

Peter Mayr, Todd A. Palmer, John W. Elmer, Eliot D. Specht

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

An experimental test melt of a boron alloyed 9Cr-3W-3Co-V,Nb steel for high temperature applications in the thermal power generation industry was produced by vacuum induction melting. This grade of steel typically displays a homogeneous tempered martensitic microstructure in the as-received, i. e. normalised and tempered, condition. However, after welding, this microstructure is significantly altered, resulting in a loss of its desired properties. The phase transformations during simulated thermal cycles typical of those experienced in the weld heat-affected zone were directly observed by insitu X-ray diffraction experiments using synchrotron radiation. Heating rates of 10 K s-1 and 100 K s-1 up to a peak temperature of 1300 °C are investigated here. The final microstructures observed after both simulated weld thermal cycles are primarily composed of martensite with approximately 4% retained delta ferrite and 4% retained austenite, by volume. With the temporal resolution of the in-situ X-ray diffraction technique, phase transformations from tempered martensite to austenite to delta ferrite during heating and to martensite during cooling were monitored. With this technique, the evolution of the final microstructure through both heating and cooling is monitored, providing additional context to the microstructural observations.

Original languageEnglish
Pages (from-to)381-386
Number of pages6
JournalZeitschrift fuer Metallkunde/Materials Research and Advanced Techniques
Volume99
Issue number4
DOIs
StatePublished - Apr 2008
Externally publishedYes

Keywords

  • Chromium steels
  • Delta ferrite
  • Heat-affected zone
  • Phase transformations
  • Retained austenite

Fingerprint

Dive into the research topics of 'Direct observation of phase transformations in the simulated heat-affected zone of a 9Cr martensitic steel'. Together they form a unique fingerprint.

Cite this