TY - GEN
T1 - Direct force reflecting teleoperation with a flexible joint robot
AU - Tobergte, Andreas
AU - Albu-Schäffer, Alin
PY - 2012
Y1 - 2012
N2 - This paper presents a high fidelity force feedback teleoperation control for surgical applications. Advanced control methods, such as flexible joint tracking control and passivity observation, are introduced in the direct force reflecting control architecture. A full state feedback controller of the flexible joint slave robot controls the motor position, velocity, the joint torque, and the torque derivative. The pose of the haptic device and the first three derivatives are observed to generate reference states for the robot control using the robot's inverse dynamics model. Interaction forces of the slave and the environment are measured with a force/torque sensor and directly sent back to the master device. Stability is guaranteed with a passivity observer that monitors the energy in the teleoperation system online and disconnects master and slave if the system operates beyond its stable region. The proposed control architecture is implemented with the sigma.7 haptic device and the MIRO robot. It is experimentally shown, that appropriately considering elasticities with full state reference and control of the slave, increases the dynamic range of the system enabling transparent and stable interaction with hard and soft environments.
AB - This paper presents a high fidelity force feedback teleoperation control for surgical applications. Advanced control methods, such as flexible joint tracking control and passivity observation, are introduced in the direct force reflecting control architecture. A full state feedback controller of the flexible joint slave robot controls the motor position, velocity, the joint torque, and the torque derivative. The pose of the haptic device and the first three derivatives are observed to generate reference states for the robot control using the robot's inverse dynamics model. Interaction forces of the slave and the environment are measured with a force/torque sensor and directly sent back to the master device. Stability is guaranteed with a passivity observer that monitors the energy in the teleoperation system online and disconnects master and slave if the system operates beyond its stable region. The proposed control architecture is implemented with the sigma.7 haptic device and the MIRO robot. It is experimentally shown, that appropriately considering elasticities with full state reference and control of the slave, increases the dynamic range of the system enabling transparent and stable interaction with hard and soft environments.
UR - http://www.scopus.com/inward/record.url?scp=84864495591&partnerID=8YFLogxK
U2 - 10.1109/ICRA.2012.6224617
DO - 10.1109/ICRA.2012.6224617
M3 - Conference contribution
AN - SCOPUS:84864495591
SN - 9781467314039
T3 - Proceedings - IEEE International Conference on Robotics and Automation
SP - 4280
EP - 4287
BT - 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
Y2 - 14 May 2012 through 18 May 2012
ER -