@inproceedings{8a0e18edca304f6c949be3f4dec5dd62,
title = "Direct Cardiac Segmentation from Undersampled K-Space using Transformers",
abstract = "The prevailing deep learning-based methods of predicting cardiac segmentation involve reconstructed magnetic resonance (MR) images. The heavy dependency of segmentation approaches on image quality significantly limits the acceleration rate in fast MR reconstruction. Moreover, the practice of treating reconstruction and segmentation as separate sequential processes leads to artifact generation and information loss in the intermediate stage. These issues pose a great risk to achieving high-quality outcomes. To leverage the redundant k-space information overlooked in this dual-step pipeline, we introduce a novel approach to directly deriving segmentations from sparse k-space samples using a transformer (DiSK). DiSK operates by globally extracting latent features from 2D+time k-space data with attention blocks and subsequently predicting the segmentation label of query points. We evaluate our model under various acceleration factors (ranging from 4 to 64) and compare against two image-based segmentation baselines. Our model consistently outperforms the baselines in Dice and Hausdorff distances across foreground classes for all presented sampling rates.",
keywords = "cardiac magnetic resonance imaging, k-space, segmentation, transformer",
author = "Yundi Zhang and Nil Stolt-Anso and Jiazhen Pan and Wenqi Huang and Kerstin Hammernik and Daniel Rueckert",
note = "Publisher Copyright: {\textcopyright} 2024 IEEE.; 21st IEEE International Symposium on Biomedical Imaging, ISBI 2024 ; Conference date: 27-05-2024 Through 30-05-2024",
year = "2024",
doi = "10.1109/ISBI56570.2024.10635282",
language = "English",
series = "Proceedings - International Symposium on Biomedical Imaging",
publisher = "IEEE Computer Society",
booktitle = "IEEE International Symposium on Biomedical Imaging, ISBI 2024 - Conference Proceedings",
}