Digital quantum simulation of spin models with circuit quantum electrodynamics

Y. Salathé, M. Mondal, M. Oppliger, J. Heinsoo, P. Kurpiers, A. Potočnik, A. Mezzacapo, U. Las Heras, L. Lamata, E. Solano, S. Filipp, A. Wallraff

Research output: Contribution to journalArticlepeer-review

224 Scopus citations

Abstract

Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

Original languageEnglish
Article number021027
JournalPhysical Review X
Volume5
Issue number2
DOIs
StatePublished - 2015
Externally publishedYes

Fingerprint

Dive into the research topics of 'Digital quantum simulation of spin models with circuit quantum electrodynamics'. Together they form a unique fingerprint.

Cite this