Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas

Paul Eichinger, Esther Alberts, Claire Delbridge, Stefano Trebeschi, Alexander Valentinitsch, Stefanie Bette, Thomas Huber, Jens Gempt, Bernhard Meyer, Juergen Schlegel, Claus Zimmer, Jan S. Kirschke, Bjoern H. Menze, Benedikt Wiestler

Research output: Contribution to journalArticlepeer-review

61 Scopus citations

Abstract

We hypothesized that machine learning analysis based on texture information from the preoperative MRI can predict IDH mutational status in newly diagnosed WHO grade II and III gliomas. This retrospective study included in total 79 consecutive patients with a newly diagnosed WHO grade II or III glioma. Local binary pattern texture features were generated from preoperative B0 and fractional anisotropy (FA) diffusion tensor imaging. Using a training set of 59 patients, a single hidden layer neural network was then trained on the texture features to predict IDH status. The model was validated based on the prediction accuracy calculated in a previously unseen set of 20 gliomas. Prediction accuracy of the generated model was 92% (54/59 cases; AUC = 0.921) in the training and 95% (19/20; AUC = 0.952) in the validation cohort. The ten most important features were comprised of tumor size and both B0 and FA texture information, underlining the joint contribution of imaging data to classification. Machine learning analysis of DTI texture information and tumor size reliably predicts IDH status in preoperative MRI of gliomas. Such information may increasingly support individualized surgical strategies, supplement pathological analysis and highlight the potential of radiogenomics.

Original languageEnglish
Article number13396
JournalScientific Reports
Volume7
Issue number1
DOIs
StatePublished - 1 Dec 2017

Fingerprint

Dive into the research topics of 'Diffusion tensor image features predict IDH genotype in newly diagnosed WHO grade II/III gliomas'. Together they form a unique fingerprint.

Cite this