TY - GEN
T1 - Diffusion-Based Hierarchical Multi-label Object Detection to Analyze Panoramic Dental X-Rays
AU - Hamamci, Ibrahim Ethem
AU - Er, Sezgin
AU - Simsar, Enis
AU - Sekuboyina, Anjany
AU - Gundogar, Mustafa
AU - Stadlinger, Bernd
AU - Mehl, Albert
AU - Menze, Bjoern
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
PY - 2023
Y1 - 2023
N2 - Due to the necessity for precise treatment planning, the use of panoramic X-rays to identify different dental diseases has tremendously increased. Although numerous ML models have been developed for the interpretation of panoramic X-rays, there has not been an end-to-end model developed that can identify problematic teeth with dental enumeration and associated diagnoses at the same time. To develop such a model, we structure the three distinct types of annotated data hierarchically following the FDI system, the first labeled with only quadrant, the second labeled with quadrant-enumeration, and the third fully labeled with quadrant-enumeration-diagnosis. To learn from all three hierarchies jointly, we introduce a novel diffusion-based hierarchical multi-label object detection framework by adapting a diffusion-based method that formulates object detection as a denoising diffusion process from noisy boxes to object boxes. Specifically, to take advantage of the hierarchically annotated data, our method utilizes a novel noisy box manipulation technique by adapting the denoising process in the diffusion network with the inference from the previously trained model in hierarchical order. We also utilize a multi-label object detection method to learn efficiently from partial annotations and to give all the needed information about each abnormal tooth for treatment planning. Experimental results show that our method significantly outperforms state-of-the-art object detection methods, including RetinaNet, Faster R-CNN, DETR, and DiffusionDet for the analysis of panoramic X-rays, demonstrating the great potential of our method for hierarchically and partially annotated datasets. The code and the datasets are available at https://github.com/ibrahimethemhamamci/HierarchicalDet.
AB - Due to the necessity for precise treatment planning, the use of panoramic X-rays to identify different dental diseases has tremendously increased. Although numerous ML models have been developed for the interpretation of panoramic X-rays, there has not been an end-to-end model developed that can identify problematic teeth with dental enumeration and associated diagnoses at the same time. To develop such a model, we structure the three distinct types of annotated data hierarchically following the FDI system, the first labeled with only quadrant, the second labeled with quadrant-enumeration, and the third fully labeled with quadrant-enumeration-diagnosis. To learn from all three hierarchies jointly, we introduce a novel diffusion-based hierarchical multi-label object detection framework by adapting a diffusion-based method that formulates object detection as a denoising diffusion process from noisy boxes to object boxes. Specifically, to take advantage of the hierarchically annotated data, our method utilizes a novel noisy box manipulation technique by adapting the denoising process in the diffusion network with the inference from the previously trained model in hierarchical order. We also utilize a multi-label object detection method to learn efficiently from partial annotations and to give all the needed information about each abnormal tooth for treatment planning. Experimental results show that our method significantly outperforms state-of-the-art object detection methods, including RetinaNet, Faster R-CNN, DETR, and DiffusionDet for the analysis of panoramic X-rays, demonstrating the great potential of our method for hierarchically and partially annotated datasets. The code and the datasets are available at https://github.com/ibrahimethemhamamci/HierarchicalDet.
KW - Diffusion Network
KW - Hierarchical Learning
KW - Multi-Label Object Detection
KW - Panoramic Dental X-ray
KW - Transformers
UR - http://www.scopus.com/inward/record.url?scp=85174747177&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43987-2_38
DO - 10.1007/978-3-031-43987-2_38
M3 - Conference contribution
AN - SCOPUS:85174747177
SN - 9783031439865
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 389
EP - 399
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
A2 - Greenspan, Hayit
A2 - Greenspan, Hayit
A2 - Madabhushi, Anant
A2 - Mousavi, Parvin
A2 - Salcudean, Septimiu
A2 - Duncan, James
A2 - Syeda-Mahmood, Tanveer
A2 - Taylor, Russell
PB - Springer Science and Business Media Deutschland GmbH
T2 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Y2 - 8 October 2023 through 12 October 2023
ER -