Diffusion as Sound Propagation: Physics-Inspired Model for Ultrasound Image Generation

Marina Domínguez, Yordanka Velikova, Nassir Navab, Mohammad Farid Azampour

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Deep learning (DL) methods typically require large datasets to effectively learn data distributions. However, in the medical field, data is often limited in quantity, and acquiring labeled data can be costly. To mitigate this data scarcity, data augmentation techniques are commonly employed. Among these techniques, generative models play a pivotal role in expanding datasets. However, when it comes to ultrasound (US) imaging, the authenticity of generated data often diminishes due to the oversight of ultrasound physics. We propose a novel approach to improve the quality of generated US images by introducing a physics-based diffusion model that is specifically designed for this image modality. The proposed model incorporates an US-specific scheduler scheme that mimics the natural behavior of sound wave propagation in ultrasound imaging. Our analysis demonstrates how the proposed method aids in modeling the attenuation dynamics in US imaging. We present both qualitative and quantitative results based on standard generative model metrics, showing that our proposed method results in overall more plausible images. Our code is available at github.com/marinadominguez/diffusion-for-us-images.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2024 - 27th International Conference, Proceedings
EditorsMarius George Linguraru, Qi Dou, Aasa Feragen, Stamatia Giannarou, Ben Glocker, Karim Lekadir, Julia A. Schnabel
PublisherSpringer Science and Business Media Deutschland GmbH
Pages613-623
Number of pages11
ISBN (Print)9783031720826
DOIs
StatePublished - 2024
Event27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 202410 Oct 2024

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15004 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/2410/10/24

Keywords

  • Diffusion Models
  • Synthetic Image Generation
  • Ultrasound

Fingerprint

Dive into the research topics of 'Diffusion as Sound Propagation: Physics-Inspired Model for Ultrasound Image Generation'. Together they form a unique fingerprint.

Cite this