DiffuScene: Denoising Diffusion Models for Generative Indoor Scene Synthesis

Jiapeng Tang, Yinyu Nie, Lev Markhasin, Angela Dai, Justus Thies, Matthias Nießner

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

We present DiffuScene for indoor 3D scene synthesis based on a novel scene configuration denoising diffusion model. It generates 3D instance properties stored in an unordered object set and retrieves the most similar geometry for each object configuration, which is characterized as a concatenation of different attributes, including location, size, orientation, semantics, and geometry features. We introduce a diffusion network to synthesize a collection of 3D indoor objects by denoising a set of unordered object attributes. Unordered parametrization simplifies and eases the joint distribution approximation. The shape feature diffusion facilitates natural object placements, including symmetries. Our method enables many downstream applications, including scene completion, scene arrangement, and text-conditioned scene synthesis. Experiments on the 3D-FRONT dataset show that our method can synthesize more physically plausible and diverse indoor scenes than state-of-the-art methods. Extensive ablation studies verify the effectiveness of our design choice in scene diffusion models.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages20507-20518
Number of pages12
ISBN (Electronic)9798350353006
DOIs
StatePublished - 2024
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: 16 Jun 202422 Jun 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period16/06/2422/06/24

Keywords

  • Diffusion Models
  • Scene Arrangement
  • Scene Completion
  • Scene Synthesis

Fingerprint

Dive into the research topics of 'DiffuScene: Denoising Diffusion Models for Generative Indoor Scene Synthesis'. Together they form a unique fingerprint.

Cite this